1. Why is the " -k " in the formula for Boyer-Moore bad-symbol shift?
$d_{1}=\max \left\{t_{1}(c)-k, 1\right\}$, where $t_{1}(c)$ is the value from the Horspool shift table.

Boyer-Moore Algorithm: After successfully matching $0<k<m$ characters, with a mismatch after k matches from the end of the pattern (the corresponding mismatched character in the text is c), the algorithm shifts the pattern right by

$$
d=\max \left\{d_{1}, d_{2}\right\}
$$

where $d_{1}=\max \left\{t_{1}(c)-k, 1\right\}$ is the bad-symbol shift. $t_{1}(c)$ is the entry for c from the Horspool table. $d_{2}(k)$ is the good-suffix shift
2. (4 points) With one or two other students, try to come up with rules for creating the good shift table for a pattern string of length m . Input: the pattern string. Output: a table of $\mathrm{m}-1$ shift values. $\mathrm{gs}[\mathrm{k}]$ is the amount that we can shift the pattern if the last k characters of the pattern match the text. [domain: $\mathrm{k}=1$..m-1]

Example patterns to help you think about this: CABABA, AWOWWOW, WOWWOW, ABRACADABRA.
3. For each given string, fill in the good-suffix table from the Boyer-Moore algorithm. Once again, work with one or two other students.

1. banana

\mathbf{k}	shift
1	
2	
3	
4	
5	

2. wowwow

\mathbf{k}	shift
1	
2	
3	
4	
5	

3. abcdcbcabcabc

\mathbf{k}	shift
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

