MA/CSSE 473 Day 26

1. Why is the "-k" in the formula for Boyer-Moore bad-symbol shift? $d_1 = \max\{t_1(c) - k, 1\}$, where $t_1(c)$ is the value from the Horspool shift table.

Boyer-Moore Algorithm: After successfully matching 0 < k < m characters, with a mismatch after k matches from the end of the pattern (the corresponding mismatched character in the text is *c*), the algorithm shifts the pattern right by

 $d = \max \{d_1, d_2\}$ where $d_1 = \max\{t_1(c) - k, 1\}$ is the bad-symbol shift. $t_1(c)$ is the entry for c from the Horspool table. $d_2(k)$ is the good-suffix shift

2. (4 points) With one or two other students, try to come up with rules for creating the good shift table for a pattern string of length m. Input: the pattern string. Output: a table of m-1 shift values. gs[k] is the amount that we can shift the pattern if the last k characters of the pattern match the text. [domain: k = 1..m-1] Example patterns to help you think about this: CABABA, AWOWWOW, WOWWOW, ABRACADABRA.

3. For each given string, fill in the good-suffix table from the Boyer-Moore algorithm. Once again, work with one or two other students.

1.	bana	ana
1.	bana	ana

k	shift
1	
2	
3	
4	
5	

2. wowwow

k	shift
1	
2	
3	
4	
5	

3. abcdcbcabcabc

k	shift
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

B-trees: All of the info from today's class is in the slides.