Student questions
Boyer-Moore

B Trees

MA/CSSE 473
Day 26 ® o

L1
e ' O
<

Recap: Boyer Moore Intro

e When determining how far to shift after a
mismatch
— Horspool only uses the text character corresponding to
the rightmost pattern character
— Can we do better?

e Often there is a partial match (on the right end of
the pattern) before a mismatch occurs

e Boyer-Moore takes into account k, the number of
matched characters before a mismatch occurs.

e |f k=0, same shift as Horspool. So we consider
0< k< m (if k=m, it is a match). .




Boyer-Moore Algorithm

e Based on two main ideas:

e compare pattern characters to text characters
from right to left

e precompute the shift amounts in two tables

— bad-symbol table indicates how much to shift based
on the text’s character that causes a mismatch

— good-suffix table indicates how much to shift based
on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore

¢ If the rightmost character of the pattern does not match,
Boyer-Moore algorithm acts much like Horspool’s

¢ |f the rightmost character of the pattern does match, BM
compares preceding characters right to left until either
— all pattern’s characters match, or

— a mismatch on text’s character ¢ is encountered after k>0
matches

text | ] | |

# k matches

pattern | ‘ ‘ |

bad-symbol shift: How much should we shift by?
d, = max{t,(c) - k, 1}, o
where t,(c) is the value from the Horspool shift table. . ="c==.*




Boyer-Moore Algorithm

After successfully matching 0 < k < m characters, with a mismatch at
character k from the end (the character in the text is c), the algorithm
shifts the pattern right by

d=max{d,, d,}
where d; = max{t,(c) - k, 1} is the bad-symbol shift
d,(k) is the good-suffix shift

Remaining question:
How to compute good-suffix shift table?

d,[k] = 22?

Boyer-Moore Recap 2
n | length of text

m | length of pattern

i | position in text that we are trying to match with rightmost
pattern character

k number of characters (from the right) successfully
matched before a mismatch

After successfully matching O < k < m characters, the
algorithm shifts the pattern right by
d =max{d,, d,}
where d; = max{t,[c] - k, 1} is the bad-symbol shift
(t,[c] is from Horspool table)
d,[k] is the good-suffix shift - e
(next we explore how to compute it) '




Good-suffix Shift in Boyer-Moore

Good-suffix shift d, is applied after the k last characters
of the pattern are successfully matched

—0<k<m
How can we take advantage of this?

As in the bad suffix table, we want to pre-compute
some information based on the characters in the suffix.

We create a good suffix table whose indices are k =
1...m-1, and whose values are how far we can shift after
matching a k-character suffix (from the right).

Spend some time talking with one or two other
students. Try to come up with criteria for how far we
can shift.

Example patterns: CABABA AWOWWOW -
WOWWOW ABRACADABRA ="2-=.®

o

Solution (hide this until after class)

1. banana 2. WOWWOW 3. abcdcbeabeabe

k| shift k| shift k | shift
1] 4 1] 2 1 8
2| 6 2| s 2 6
3| 2 3] 3 3 10
4] 6 al 3 4 10
5| 6 51 3 5 3
6 10
7 10
8 10
9 10
10| 10
11| 10 |s o
12| 10 | e

w




Boyer-Moore example (Levitin)

BESS KNEW_ ABOUT BAOBABS
BAOBAB
d,=t(K)=6 B AOBAB
di=t,()2=4
d,(2)=5
BAOBAB
d=t()-1=5
d,(1) =2

B AOB A B (success)

=

Boyer-Moore Example (mine)

pattern = abracadabra

text =
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
m=11, n = 67

badCharacterTable: a3 b2 r1l a3 c6 x11

GoodSuffixTable: (1,3) (2,10) (3,10) 4.7) (5,7) (6,7 (*7.,7) (8,7)
.7 (10, N

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

i= 10 k=1 tl = 11 di = 10 d2 = 3
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
i= 20 k=1 tl = 6 di = 5 d2r="3
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

i= 25 k=1 tl = 6 dl = 5 d2 = 3

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra g P

i = 30 k= 0 tl= 1 di = 1 v




Boyer-Moore Example (mine)

First step is a repeat from the previous slide

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra

abracadabra
i= 30 k=0 tl = 1 di = 1
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
i= 31 k= 3 tl = 11 di = 8 d2 = 10
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
i = 41 k=0 tl = 1 di = 1
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
i = 42 k = 10 tL = 2 di = 1 d2 = 7
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
i = 49 k=1 tl = 11 di = 10 d2 = 3
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadagr%
abracadabra_t_ -~ e

49 Brute force took 50 times through the outer T
loop; Horspool took 13; Boyer-Moore 9 times. '

Boyer-Moore Example

e On Moore's home page

e http://www.cs.utexas.edu/users/moore/best-
ideas/string-searching/fstrpos-example.html




B-trees
e We will do a quick overview.

e For the whole scoop on B-trees (Actually B+
trees), take CSSE 333, Databases.

e Nodes can contain multiple keys and pointers
to other to subtrees

B-tree nodes

e Each node can represent a block of disk storage;
pointers are disk addresses

e This way, when we look up a node (requiring a disk
access), we can get a lot more information than if we
used a binary tree

e In an n-node of a B-tree, there are n pointers to
subtrees, and thus n-1 keys

e ForallkeysinT,, K<T, <K,
K, is the smallest key that appearsin T,

‘po K 91‘ oo ‘F‘m‘ Ki‘pi‘ R [ PR [ e | P
n

® @

o w8

To i T Tz Tha v
EIGURE 7.7 Parental node of 5 B-tree




B-tree nodes (tree of order m)

e All nodes have at most m-1 keys

e All keys and associated data are stored in special leaf
nodes (that thus need no child pointers)

e The other (parent) nodes are index nodes

e All index nodes except the root have
between| m/2 ]and m children

e root has between 2 and m children

e All leaves are at the same level

e The space-time tradeoff is because of duplicating some
keys at multiple levels of the tree

e Especially useful for data that is too big to fit
in memory. Why? B

e Example on next slide v

Example B-tree(order 4)

4,7,10] [ 11,14] 15,16, 19] | 20, 24] | 25,"28| [ 34, 38] |40, 43, 46] | 51, 55]|60, 68, 80|

FIGURE 7.8 Example of a B-tree of order 4

=
FIGURE 7.9 B-tree obtained after inserting 65 into the B-tree in Figure 7.8 v




Search for an item

Within each parent or leaf node, the keys are
sorted, so we can use binary search (log m), which
is a constant with respect to n, the number of
items in the table

Thus the search time is proportional to the height
of the tree

Max height is approximately log; ., n

Exercise for you: Read and understand the
straightforward analysis on pages 273-274

Insert and delete are also proportional to height
of the tree




