MA/CSSE 473
Day 25 ® o

>
. -~ -~
Student questions > .‘ .

String search
Horspool

Boyer Moore intro

Brute Force, Horspool, Boyer-Moore

STRING SEARCH

Brute Force String Search Example

The problem: Search for the first occurrence of a
pattern of length m in a text of length n.
Usually, m is much smaller than n.

* What makes brute force so slow?
* When we find a mismatch, we can shift the pattern by
only one character position in the text.

Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra ® e
abracadabra - =" 8

abracadabra v

Faster String Searching

Was a HW
problem

e A little better: but still ©(mn) on average
— Short-circuit the inner loop

e Brute force: worst case m(n-m+1)

def search(pattern, text):
n, m = lenitext),len{pattern)
for i in range{n-m+l):
1 =0
while] < m and text[i+]] == pattern[]]:
7 +=1
if J==m:
return 1
return False

What we want to do

e When we find a character mismatch
— Shift the pattern as far right as we can
— With no possibility of skipping over a match.

Horspool's Algorithm

A simplified version of the Boyer-Moore algorithm
A good bridge to understanding Boyer-Moore
Published in 1980

Recall: What makes brute force so slow?

— When we find a mismatch, we can only shift the pattern to
the right by one character position in the text.

— Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra

Can we sometimes shift farther?
Like Boyer-Moore, Horspool does the comparisons in a
counter-intuitive order (moves right-to-left oy -

through the pattern) v

Horspool's Main Question

e If there is a character mismatch, how far can
we shift the pattern, with no possibility of
missing a match within the text?

e What if the last character in the pattern is
compared to a character in the text that does
not occur anywhere in the pattern?

e Text: ... ABCDEFG ...
Pattern: CSSE473

How Far to Shift?

Look at first (rightmost) character in the part of the text
that is compared to the pattern:

The character is not in the pattern

..... C...--.-.--. {Cnotin pattern)
BAOBAB

e The character is in the pattern (but not the rightmost)
..... O......----(0occursoncein pattern)
BAOBAB
..... A.(Aoccurstwicein pattern)
BAOBAB

e The rightmost characters do match
..... B oo o
BAOBAB

Shift Table Example

e Shift table is indexed by text and pattern

alphabet
E.g., for BAOBAB:

e EXERCISE: Create the shift table for
COCACOLA (on your handout)

Example of Horspool’s Algorithm

BARD LOVED BANANAS (this is the text)
BAOBAB (this is the pattern)
BAOBAB
BAOBAB

BAOBAB (unsuccessful search)

)

=

Horspool Code

def populateshiftTable(table, pattern, mMinusOne):
for i in range {mMinusoOne) :
table[ord(pattern[i])] = mMinusCne - 1

def search(pattern, text):
mer return index of first occurrence of pattern in text;
return -1 if no match """
n, m = len(text), len(pattern)
shiftTable = [m]*128 # if char not in pattern, shift by full amount
populatesShiftTable (shiftTable, pattern, m-1)

i=m-1# 1 is position in text that corresponds to end of pattern
while i < n: # while not past end of text
k =0 # k is number of pattern characters compared so far

while k < m and pattern[m-1-k]==text[i-k]:
k 4= 1; # loop stops if mismatch or complete match

if k==m: # found a match
return i - m + 1
i =i + shiftTable[ord(text[1i])] # ready to begin next compariscon

return -1

Horspool Example

pattern = abracadabra
text =
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
shiftTable: a3 b2 rl a3 c6 a3 d4 a3 b2 rl1 a3 x11
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

Continued on
next slide

Horspool Example Continued

pattern = abracadabra

text =
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
shiftTable: a3 b2 rl a3 c6 a3 d4 a3 b2 rl1 a3 x11

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra

49

Using brute force, we would have to compare the pattern
to 50 different positions in the text before we find it;
with Horspool, only 13 positions are tried.

Boyer Moore Intro

When determining how far to shift after a
mismatch

— Horspool only uses the text character
corresponding to the rightmost pattern character

— Can we do better?

Often there is a partial match (on the right end
of the pattern) before a mismatch occurs

Boyer-Moore takes into account k, the number
of matched characters before a mismatch
occurs.

If k=0, same shift as Horspool. v

Boyer-Moore Algorithm

e Based on two main ideas:

e compare pattern characters to text characters
from right to left

e precompute the shift amounts in two tables

— bad-symbol table indicates how much to shift based
on the text’s character that causes a mismatch

— good-suffix table indicates how much to shift based
on matched part (suffix) of the pattern

Bad-symbol shift in Boyer-Moore

¢ If the rightmost character of the pattern does not match,
Boyer-Moore algorithm acts much like Horspool

¢ |f the rightmost character of the pattern does match, BM
compares preceding characters right to left until either
— all pattern’s characters match, or

— a mismatch on text’s character ¢ is encountered after k>0
matches

text |] | |

k matches

pattern | ‘ ‘ |

bad-symbol shift: How much should we shift by?
d, = max{t,(c) - k, 1}, o
where t,(c) is the value from the Horspool shift table. . ="c==.*

Boyer-Moore Algorithm

After successfully matching 0 < k < m characters, the algorithm
shifts the pattern right by

d=max{d,, d,}
where d; = max{t;(c) - k, 1} is the bad-symbol shift
d,(k) is the good-suffix shift

Remaining question:
How to compute good-suffix shift table?

d,[k] = ???

Good-suffix Shift in Boyer-Moore

Good-suffix shift d, is applied after the k last characters
of the pattern are successfully matched
—0<k<m

How can we take advantage of this?

As in the bad suffix table, we want to pre-compute
some information based on the characters in the suffix.

We create a good suffix table whose indices are k =
1...m-1, and whose values are how far we can shift after
matching a k-character suffix (from the right).

Spend some time talking with one or two other

students. Try to come up with criteria for how far we

can shift.

Example patterns: CABABA AWOWWOW ° o
WOWWOW ABRACADABRA ~"==..°

Can you figure these out?

4. For each given string, fill in the good-suffix table from the Boyer-Moore algorithm.

1. banana 2. wowwow 3. abcdcbcabcabe
k| shift k| shift k shift
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6
7
8
9
10
11
12

Boyer-Moore example (Levitin)

BESS KNEW_ ABOUT BAOBABS
BAOBAB
d,=t(K)=6 BAOBAB
di=t,()2=4
d,(2)=5
BAOBAB
d=t()-1=5
dy(1) =2

B A OB A B (success)

10

