MA/CSSE 473
Day 23 ® o

>
Review of Binary .. .’. .
Heaps and Heapsor -

Overview of what
you should know
about hashing

Answers to student
guestions

Binary (max) Heap Quick Review

Representation change example See also Weiss

. Chapter 21 (Weiss
e An almost-complete Binary Tree doeps e h(eaps)

— All levels, except possibly the last, are full
— On the last level all nodes are as far left as possible
— No parent is smaller than either of its children

— A great way to represent a Priority Queue

e Representing a binary heap as an array:

® the array representation
(5) (7) index 0 1 2 3 4 5 6
value [[10]5]7[4]2]1]
parents leaves »
» @ @ e

FIGURE 6.10 Heap and its array representation -

Insertion and RemoveMax

Insert an item:

— Insert at the next position (end of the array) to
maintain an almost-complete tree, then "percolate up"
within the tree to restore heap property.

RemoveMax:

— Move last element of the heap to replace the root,
then "percolate down" to restore heap property.

Both operations are ©(log n).

e Many more details (done for min-heaps):

— http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides/18- o o
Heaps.pdf g

o

’ Heap utilitiy functions

def percolateDown(a,i, n):
"""githin the n elements of A to be "re-heapified”, the two subtrees of A[i]

are already maxheaps. Repeatedly exchange the element currently in A[i] with
the largest of its children until the tree whose root is a[i] is a max heap. """
current = 1 # root position for subtree we are heapifying

lastNodeWithchild = n//2 # if a node number is higher than this, it is a leaf.
while current <= lastNodeWithChild:
max = current

if a[max] < al[Z*currentl: # if it is larger than its left child.
max = Z¥current
if 2%current < n and almax] < al[Z2%current+l]: # But if there is a right child,
max = 2*current + 1 # right child may be larger than either
1f max == current:
creak # larger than its children, so we are done.
swap(a, current, max) # otherwise, exchange, move down tree, and check again.
current = max

def percolateUp(a,n):
'Assume that elements 1 through n-1 are a heap; add element n and "re-heapify™'

compare to parent and swap until not larger than parent.
current = n
while current > 1: # or until this wvalue is in the root.

if alcurrent//2]1 >= al[current]:
swap (a, current, current//2)
current //= 2

Code is on-line, linked from the schedule page v

HeapSort

e Arrange array into a heap. (details next slide)

e fori=n downto 2:
a[l]«>ali], then "reheapify" a[1]..a[i-1]

HeapSort Code

The next two functions tdo the same thing; take an uncrdered
array and turn it into a max-heap. In HW 10, you will show
that the secondis much more efficient than the first.
So this first one is not actually called in this code.
def heapifyByInsert(a, n):
""" Repeatedly insert elements into the heap.
Worst case number of element exchanges:
sum of depths of nodes.™™"

or i in range (2, n+l):

percolateUp(a, 1)

buildHeap (a, n):
""" Fach time through the loop, each of node i's two
subtreees is alrsady a heap.
Find the correct position to move the root down to
in order to "reheapify.™
Worst case number of element exchanges:
sum of heights of nodes.™"™
or i in range (n//2, 0, -1):
percolateDown(a, i, n)

el

heapSort(a, n):

buildHeap (a, n)

for 1 in range(n, 1, -1):
swap(a, 1, 1)
percolateDown(a, 1, i-1)

HeapSort: Build Initial Heap

e Two approaches:
—fori=2ton
percolateUp(i)
— forj=n/2 downto 1
percolateDown(j)
e Which is faster, and why?

e What does this say about overall big-theta
running time for HeapSort?

Polynomial Evaluation
Problem Reductiion

TRANSFORM AND CONQUER

Horner's Rule

It involves a representation change.

Instead of a x" +a, x"1+... +a;x+a, which
requires a lot of multiplications, we write

(..(@ax+a,)x+..+a;)x+a,

code on next slide

Horner's Rule Code

e This is clearly ©(n).

def polyEvalHorner (p, X):
"rrop is a list representing the coefficients.
pli] is the coefficient of x"i.
¥ is where we are to evaluate p. """
sum = 0
for 1 in range{lenip)-1, -1, -1):
sum = sum * ¥ + pl[i]

return sum

evaluate 4x43 + 3x"2 + 2x + 1 at x=2
print polyvEvalHorner([l, 2, 3, 41, 2}

Problem Reduction

e Express an instance of a problem in terms of an
instance of another problem that we already
know how to solve.

e There needs to be a one-to-one mapping between
problems in the original domain and problems in
the new domain.

e Example: In quickhull, we reduced the problem of
determining whether a point is to the left of a line
to the problem of computing a simple 3x3
determinant.

e Example: Moldy chocolate problem in HW 9.
The big question: What problem to reduce it to? , .
(You'll answer that one in the homework) == e

Least Common Multiple

e Let m and n be integers. Find their LCM.
e Factoring is hard.

e But we can reduce the LCM problem to the
GCD problem, and then use Euclid's algorithm.

e Note that lcm(m,n)-gcd(m,n) = m-n
e This makes it easy to find lcm(m,n)

Paths and Adjacency Matrices

e We can count paths from A to B in a graph by
looking at powers of the graph's adjacency
matrix.

=]

a

[=x
[I S o R . R i]
e =
O - o o0oo
o e N e B e Y
- 00 = = o
0O - 00 = @
[I S o R . R i]
- = O = W .
- 00 = = =
- = = OO0
- W = O = oo
Py —= = —= — @

For this example, | used the applet from
http://oneweb.utc.edu/~Christopher-Mawata/petersen2/lesson?.htm,
which is no longer accessible ° e

Linear programming

* We want to maximize/minimize a linear function

;‘*‘ , Subject to constraints, which are linear
equations or inequalities involving the n variables
X1yeerXp -

e The constraints define a region, so we seek to maximize
the function within that region.

e |f the function has a maximum or minimum in the
region it happens at one of the vertices of the convex
hull of the region.

e The simplex method is a well-known algorithm for
solving linear programming problems. We will not deal
with it in this course.

e The Operations Research courses cover linear o _: :

programming in some detail. v

Integer Programming

e A linear programming problem is called an
integer programming problem if the values of
the variables must all be integers.

e The knapsack problem can be reduced to an
integer programming problem:

* maximize ZXV subject to the constraints
Zn:xiwi<W and x, {0, 1} for i=1, ..., n

Sometimes using a little more space saves a lot of
time

SPACE-TIME TRADEOFFS

€

Space vs time tradeoffs

e Often we can find a faster algorithm if we are
willing to use additional space.

e Examples:

Space vs time tradeoffs

e Often we can find a faster algorithm if we are
willing to use additional space.

* Give some examples (quiz question)

e Examples:

— Binary heap vs simple sorted array. Uses one extra
array position

— Merge sort

— Radix sort and Bucket Sort

— Anagram finder

— Binary Search Tree (extra space for the pointers)
— AVL Tree (extra space for the balance code)

Hashing Highlights

e We cover this pretty thoroughly in CSSE 230, and Levitin
does a good job of reviewing it concisely, so I'll have
you read it on your own (section 7.3).

e On the next slides you'll find a list of things you should
know (some of them expressed here as questions)

e Details in Levitin section 7.3 and Weiss chapter 20.
e QOutline of what you need to know is on the next slides.

e Will not cover them in great detail in class, since they
are typically covered well in 230.

e Today: talk with students near you and answer the last
two questions on today's handout.

Hashing — You should know, part 1

e Hash table logically contains key-value pairs.

e Represented as an array of size m. H[0..m-1]
Typically m is larger than the number of pairs
currently in the table.

e Hash function h(K) takes key K to a number in
range 0..m
e Hash function goals:
— Distribute keys as evenly as possible in the table.
— Easy to compute.
— Does not require m to be a lot larger than the_. __: <

number of keys in the table. v

10

Hashing — You should know, part 2

e Load factor: ratio of used table slots to total table
slots.
— Smaller 2 better time efficiency (fewer collisions)
— Larger -2 better space efficiency

e Two main approaches to collision resolution
— Open addressing
- Se

e Open addressing basic idea

— When there is a collision during insertion,
systematically check later slots (with wraparound) until
we find an empty spot.

— When searching, we systematically move through the
array in the same way we did upon insertion until _

we find the key we are looking for or an empty §.=%
slot. v

Hashing — You should know, part 3

e Open addressing — linear probing

— When there is a collision, check the next cell, then
the next one,..., (with wraparound)

— Let a be the load factor, and let S and U be the
expected number of probes for successful and
unsuccessful searches. Expected values for S and

U are ; :) :
o E(l R 5(1 + —(-l_a)g)
50% 1.5 25
75% 2.5 8.5

90% 55 50.5 #

11

Hashing — You should know, part 4

e Open addressing — double hashing

— When there is a collision, use another hash
function s(K) to decide how much to increment by
when searching for an empty location in the table

— So we look in H(k), H(k) + s(k), H(k) + 2s(k), ..., with
everything being done mod m.

— If we we want to utilize all possible array positions,
gcd(m, s(k)) must be 1. If m is prime, this will
happen.

Hashing — You should know, part 5

e Separate chaining

— Each of the m positions in the array contains a link
ot a structure (perhaps a linked list) that can hold
multiple values.

— Does not have the clustering problem that can
come from open addressing.

Sm1+§ and U =aq,

— For more details, including quadratic probing, see
Weiss Chapter 20 or my CSSE 230 slides (linked | _
from the schedule page) T e

12

