MA/CSSE 473

AVL Tree

Maximum height
2-3 Trees

Heap Review: intro
Student questions?

Review: Representation change:
AVL Trees (what you should remember...)

e Named for authors of original paper, Adelson-Velskii and
Landis (1962).

e An AVL tree is a height-balanced Binary Search Tree.
e A BST T is height balanced if T is empty, or if

— | height(T,) - height(T;) | <1, and

— T, and T, are both height-balanced.

e Show: Maximum height of an AVL tree with N nodes is
®(Iog N) Let's review that together

e How do we maintain balance after insertion?

e Exercise for later: Given a pointer to the root of an AVL
tree with N nodes, find the height of the tree in log N time

* Details on balance codes and various rotations are __. _: :
in the CSSE 230 slides that are linked from the =4
schedule page. .

Representation change: 2-3 trees

e Another approach to balanced trees

e Keeps all leaves on the same level

e Some non-leaf nodes have 2 keys and 3 subtrees
e Others are regular binary nodes.

2-node 3-node

<K > K

FIGURE 6.7 Two kinds of nodes of a 2-3 tree

2-3 tree insertion example
e More examples of insertion:

http://www.cs.ucr.edu/cs14/cs14 06win/slides/2-

3 trees covered.pdf
http://slady.net/java/bt/view.php?w=450&h=300

@"
o= I
W N Xt

FIGURE 6.8 Construction of a 2-3 tree for the list 9, 5, 8,3, 2, 4,7 -

Add 10, 11, 12, ... to the last tree

Efficiency of 2-3 tree insertion

e Upper and lower bounds on height of a tree
with n elements?

e Worst case insertion and lookup times is
proportional to the height of the tree.

2-3 Tree insertion practice

e Insert 84 into this tree and show the resulting
tree

2-3 Tree insertion practice

e Insert 84 into this tree and show the resulting
tree

Binary (max) Heap Quick Review

Representation change example See also Weiss

. Chapter 21 (Weiss
e An almost-complete Binary Tree doeps e h(eaps)

— All levels, except possibly the last, are full

— On the last level all nodes are as far left as possible
— No parent is smaller than either of its children

— A great way to represent a Priority Queue

e Representing a binary heap as an array:

® the array representation
(5) (7) index 0 1 2 3 4 5 6
value [[10]5]7[4]2]1]

o e o parents leaves » @

FIGURE 6.10 Heap and its array representation .

Insertion and RemoveMax

Insertion:

— Insert at the next position (end of the array) to
maintain an almost-complete tree, then "percolate up"
within the tree to restore heap property.

RemoveMax:

— Move last element of the heap to replace the root,
then "percolate down" to restore heap property.

Both operations are ©(log n).

e Many more details (done for min-heaps):

— http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides/18- o o
Heaps.pdf g

o

’ Heap utilitiy functions

def percolateDown(a,i, n):
"""githin the n elements of A to be "re-heapified”, the two subtrees of A[i]

are already maxheaps. Repeatedly exchange the element currently in A[i] with
the largest of its children until the tree whose root is a[i] is a max heap. """
current = 1 # root position for subtree we are heapifying

lastNodeWithchild = n//2 # if a node number is higher than this, it is a leaf.
while current <= lastNodeWithChild:
max = current

if a[max] < al[Z*currentl: # if it is larger than its left child.
max = Z¥current
if 2%current < n and almax] < al[Z2%current+l]: # But if there is a right child,
max = 2*current + 1 # right child may be larger than either
1f max == current:
creak # larger than its children, so we are done.
swap(a, current, max) # otherwise, exchange, move down tree, and check again.
current = max

def percolateUp(a,n):
'Assume that elements 1 through n-1 are a heap; add element n and "re-heapify™'

compare to parent and swap until not larger than parent.
current = n
while current > 1: # or until this wvalue is in the root.

if alcurrent//2]1 >= al[current]:
swap (a, current, current//2)
current //= 2

Code is on-line, linked from the schedule page v

HeapSort

e Arrange array into a heap. (details next slide)

e fori=n downto 2:
a[l]«>ali], then "reheapify" a[1]..a[i-1]

HeapSort Code

The next two functions tdo the same thing; take an uncrdered
array and turn it into a max-heap. In HW 10, you will show
that the secondis much more efficient than the first.
So this first one is not actually called in this code.
def heapifyByInsert(a, n):
""" Repeatedly insert elements into the heap.
Worst case number of element exchanges:
sum of depths of nodes.™™"

or i in range (2, n+l):

percolateUp(a, 1)

buildHeap (a, n):
""" Fach time through the loop, each of node i's two
subtreees is alrsady a heap.
Find the correct position to move the root down to
in order to "reheapify.™
Worst case number of element exchanges:
sum of heights of nodes.™"™
or i in range (n//2, 0, -1):
percolateDown(a, i, n)

el

heapSort(a, n):

buildHeap (a, n)

for 1 in range(n, 1, -1):
swap(a, 1, 1)
percolateDown(a, 1, i-1)

Recap: HeapSort: Build Initial Heap

e Two approaches:
—fori=2ton
percolateUp(i)
— forj=n/2 downto 1
percolateDown(j)
e Which is faster, and why?

e What does this say about overall big-theta
running time for HeapSort?

