MA/CSSE 473
Day 13 ® o

e ' O

Finish
Topological Sort

Permutation
Generation

MA/CSSE 473 Day 13

e Student Questions

e Finish Topological Sort
e Permutation generation

WHY ARE g
_— ANESTHESIOLOGISTS &
& ASSUMED TO ;i
Y BE HONEST) =2

i — eechuse G

NUME-ERS 22
DON'T LIl [f

—— 8-]
'Tt-mvsy; §

Recap: Topologically sort a DAG

e DAG = Directed Aclyclic Graph

e Linearly order the vertices of the DAG so that
for every edge e, e's tail vertex precedes its
head vertex in the ordering.

DFS-based Algorithm

DFS-based algorithm for topological sorting

— Perform DFS traversal, noting the order vertices are
popped off the traversal stack

— Reversing order solves topological sorting problem
— Back edges encountered?—> NOT a dag!

Example:

Efficiency: v

Source Removal Algorithm

Repeatedly identify and remove a source (a vertex with no
incoming edges) and all the edges incident to it until either
no vertex is left (problem is solved) or there is no source
among remaining vertices (not a dag)

Example:

[]
Efficiency: same as efficiency of the DFS-based algorithm = =l

Application: Spreadsheet program

e What is an allowable order of computation of
the cells' values?

A B C
1 =C4-7 4 =C4+6
2 =A3+A1-C4 =1+B1 =B1-A4
3 7 =A3"C2-B2 =B3+A3
4 =A1"B1"A2 =C2-Ad 9

Cycles cause a problem!

A B C
1 =C¢=F+—__ 4 =C4+6
2 |=A3+A1-C4 |=1+B1 1-Ad
3 7 = 2-B2 =B3+A3
4

=A¥BT'A2 =C2-Ad 9 1

Permutations
Subsets

COMBINATORIAL OBIJECT
GENERATION -

Combinatorial Object Generation

e Generation of permutations, combinations,
subsets.

e This is a big topic in CS
e We will just scratch the surface of this subject.

— Permutations of a list of elements (no duplicates)
— Subsets of a set

Permutations

e We generate all permutations of the numbers 1..n.
— Permutations of any other collection of n distinct objects
can be obtained from these by a simple mapping.
e How would a "decrease by 1" approach work?
— Find all permutations of 1.. n-1
— Insert n into each position of each such permutation

— We'd like to do it in a way that minimizes the change
from one permutation to the next.

— It turns out we can do it so that we always get the next
permutation by swapping two adjacent elements.

First approach we might think of

e for each permutation of 1..n-1

— fori=0..n-1
e insert n in position i

e That is, we do the insertion of n into each
smaller permutation from left to right each
time

e However, to get "minimal change", we
alternate:
— Insert n L-to-R in one permutation of 1..n-1
— Insert n R-to-L in the next permutation of 1..n-1

- Etc. e

Example

e Bottom-up generation of permutations of 123

start 1

insert 2 into 1 right to left 12 21

insert 3into 12 right 1o lelt 123 132 312
insert 3into 21 left to right 321 231 213

e Example: Do the first few permutations for n=4

Johnson-Trotter Approach

* integrates the insertion of n with the generation
of permutations of 1..n-1

e Does it by keeping track of which direction each

number is currently moving
-« o>«

3241

The number k is mobile if its arrow points to an
adjacent element that is smaller than itself

* |n this example, 4 and 3 are mobile

Johnson-Trotter Approach

- o>«

3241

e The number k is mobile if its arrow points to an
adjacent element that is smaller than itself.

* In this example, 4 and 3 are mobile

e To get the next permutation, exchange the
largest mobile number (call it k) with its
neighbor.

e Then reverse directions of all numbers that are. .

larger than k. ﬁv
e |nitialize: All arrows point left.

Johnson-Trotter Driver

def main() :
p = Permutation(4)
list = []
next = p.next()
while next:
list += [next]
next = p.nexti)
print list

Johnson-Trotter background code

left = - 1 # equivalent to the left- and
right = 1 # right-pointing arrows in the book

def swap(listl, 1listz, i, Ji:
"Swap positions i and j in both lists"”
listl[i], 1istl(]j] = 1listl([3j], 1listl[i]
listz[i], 1listz[]]) = list2([3], 1listz[i]

class Permutation:
"Set current to the unpermuuted list, and all directions pointing left"
def _ init_ (self, n):
gelf.current = range(l, n + 1}
gelf.direction = [left] * n
self.n =n
self.more = True # Thﬁs is not the last permutation.

Johnson-Trotter major methods

def isMobileiself, k):
'Y An element of a permutation is mobile if its direction "arrow"
points to an element with a smaller value.'''
return k + seif.direction[k] in range(seif.n; and
gelf.current [k + gelf.direction[k]] < =elf.currentlk]

def nexti{seif):
"return current permitation and calculate next one”
if not zelf.more:
return False
returnvalue = [gelf.current[i] for i in range{self.n)]

largestMobile = 0
for 1 in range(self.n):
if =elf.isMobile{i; and self.current[i] > largestMobile:
largestMobile = sgelf.current([i]
largePos = 1

if largestMobile ==
self.more = False # This is the last permutaticn
else:
swap({gself.current, =elif.direction,
largePos, largePos + self.directionl[largePos])
for i in rangeiself.n):
if gelf.currentli] » largestMobile:
zself.direction[i] *= - 1

return "".join{[stri{vy for v in returnvaluel)

Lexicographic Permutation

Generation
e Generate the permutations of 1..n in "natural"

order.
e Let'sdo it recursively.

Lexicographic Permutation Code

def permuterecursive (prefix, remaining):
mrr Generate all lists that begin with prefix and
end with a permutation of remaining™""

if remaining == []: # this is where the recursicn ends
return [prefix]

result = [] # accumlate the list of generated prefixes

for n in remaining:
copy = [e for e in remaining] # need to remove a different
copy.remove (n) # number for each suffix we generate.

result += permuterecursive (prefix + [n], copy)
return result

def permute (n):
return permuterecursiwve ([], range(l, n+l))

print (permute (4))

Permutations and order

number permutation number permutation e (Given a perm utation

g) 12 2013 of 0, 1, ..., n-1, can

1 0132 13 2031 d tl f d th

2 0213 14 2103 We irec y In N e

3 o 15 2130 next permutation in
a 0312 16 2301 the lexicographic

5 0321 17 2310 Sequence?

6 1023 18 3012 . .

; 1032 - 3021 e Given a permutation
8 1203 20 3102 of 0..n-1, can we

o 1230 b I determine its

10 1302 22 3201 .

11 1320 23 3210 permUtatlon

sequence number?

e Given n and i, can we directly generate s—
the it permutation of O, ..., n-1? o

o

10

Discovery time (with two partners)

e Which permutation follows each of these in

lexicographic order?

— 183647520 471638520

— Try to write an algorithm for generating the next
permutation, with only the current permutation as
input.

If the lexicographic permutations of the numbers

[0, 1, 2, 3, 4,5] are numbered starting with O,

what is the number of the permutation 140327

— General form? How to calculate efficiency?

In the lexicographic ordering of permutations of

[0, 1, 2, 3, 4, 5], which permutation is number

5417? - I

— How to calculate efficiently? v

11

