MA/CSSE 473
Day 11 ° o

L1
e ' O
<

Knuth interview

Amortization
(growable Array)

Brute Force
Examples

MA/CSSE 473 Day 11

e Questions?

e Donald Knuth Interview

e Amortization

e Brute force

e (if time) Decrease and conquer intro

Donald Knuth Interview

e List a few things that you found interesting in
the interview

e What questions would you ask Donald Knuth if
you had the chance?

Amortized efficiency analysis

e P49 [49-50] in the Levitin textbook
e Definition of amortize

e We analyze not just a single operation, but a
sequence of operations performed on the same
structure
— We conclude something about the worst-case of the

average of all of the operations in the sequence

e Example: Growable array exercise from CSSE230,
which we will quickly review today

Growable Array (implement ArrayList)

e An Arraylist has a size and a capacity

e The capacity is the length of the fixed-size array
currently allocated to hold the list elements

e For definiteness, we start with size=0 and
capacity=5

e We add a total of N items (N is not known in
advance), one at a time, each to the end of the
structure

e When there is no room in the array (i.e.
capacity=size and we need to add another
element)

— Allocate a new, larger array B

— copy the size existing elements to the new arrayg: =<7,
— add the new element to the new array v

Growable Array (implement ArrayList)

When there is no room in the array (i.e. capacity=size and
we need to add another element)

— Allocate a new, larger array
— copy the size existing elements to the new array
— add the new element to the new array

What is the total/average overhead (due to element

copying) if

a. we add one to the array capacity each time we have to grow it?

b. we double the array capacity each time we have to grow it?

* Note in the second case that the amortized worst-case cost
is asymptotically less than the worst case for a single
element

e Every time we have to enlarge the capacity, we make it
so we do not have to enlarge again soon.

Brute Force Algorithms

Straightforward, simple, not subtle, usually a
simple application of the problem definition.

Often not very efficient

Easy to implement, so often the best choice if
you know you'll only apply it to small input
sizes

What is a brute force approach to

Calculate the nt" Fibonacci number?

Compute the nt" power of an integer?

Search for a particular value in a sorted array?

Sort an array?

Search for a substring of a string?

Find the maximum contiguous subsequence in an array of
integers?

Find the largest element in a Binary Search Tree?

Find the two closest points among N points in the plane?
Find the convex hull of a set of points in the plane?

Find the shortest path from vertex A to vertex B in a weighted
graph?

. Solve the traveling salesman problem?

Solve the knapsack problem?
Solve the assignment problem?

Solve the nxn non-attacking chess queens problem? o
Other problems that you can think of?

DECREASE AND CONQUER

Decrease and Conquer Algorithms

What does the term mean?

— Reduce problem instance to smaller instance of the same
problem

— Solve smaller instance

— Extend solution of smaller instance to obtain solution to
original instance

Also referred to as inductive or incremental approach
Can be implemented either top-down or bottom-up
Three variations. Decrease by
— constant amount

— constant factor

— variable amount

Decrease by constant vs by half

problem of size n of size n

problem

subproblem

subproblem
of size n/2

of size n-1

L2
solution to solution to
the subproblem the subproblem
solution to solution to
the criginal problem the original problem

FIGURE 5.1 Decrease (by onel-and-conquer technique FIGURE 5.2 Decrease (by halfl-and-conquer techniiue

One Problem, Four approaches

e Recall the problem of integer exponentiation:
Compute a", where n is a power of 2:

— Brute Force: a"=a*a*a*a*... *a
— Divide and conquer: a"= a"/2 * g"/2

— Decrease by one: a"=a"'*a

— Decrease by constant factor: a"= (a"/2)2

Variable Decrease Examples

e Euclid's algorithm

— b and a % b are smaller than a and b, but not by a
constant amount or constant factor

e Interpolation search

— The two sides of the partitioning element are
smaller than n, but can be anything from 0 to n-1.

Interpolation Search

e Searches a sorted array similar to binary search but estimates
location of the search key in A[l..r] by using its value v.

e Specifically, the values of the array’s elements are assumed to
increase linearly from A[l] to A[r]

e Location of v is estimated as the x-coordinate of the point on the
straight line through (I, A[l]) and (r, A[r]) whose y-coordinate is v:

value
|

L x=1+L(v-Al)(r -)/(Alr] - Al)]

See Weiss, section 5.6.3

Levitin Section 4.5 [5.6]

o -
index v

Interpolation Search Running time
e Average case: ®O(log (logn)) Worst: ©(n)
e What can lead to worst-case behavior?
e Social Security numbers of US residents

e Phone book (Wilkes-Barre)
e CSSE department employees*, 1984-2017

adkins defoe mutchler

anderson dalkolic oexmann

ardis degler rupakheti

azhar fisher sengupta

bagert galluzzi shillingford

baker hays srivastava

bohner Jeschke stamm

bowman kaczmarczyk stouder

boutell kinley sullivan

chenette laxer surendran

chenoweth lo taylor

chidanandan mcleish wilkin *Red and blue
clifton mellor wollowski

criss merkle young are current
cultur mohan

curry mouck employees

[19/46- AD [29/46: AD, KM [36/46: AD, KM, S |

Some "decrease by one" algorithms

Insertion sort

Selection Sort

Depth-first search of a graph

Breadth-first search of a graph

Review: Analysis of Insertion Sort

e Time efficiency
Coorstln) = n(n-1)/2 € O(n?)
Cvg(n) = n*/4 € O(n?)
Cpestln) =n-1 € O(n)
(also fast on almost-sorted arrays)
e Space efficiency: in-place
(constant extra storage)
e Stable: yes

e Binary insertion sort
® a
— use Binary search, then move elements =" e

to make room for inserted element v

Graph Traversal

Many problems require processing all graph
vertices (and edges) in systematic fashion

Most common Graph traversal algorithms:

— Depth-first search (DFS)

— Breadth-first search (BFS)

Depth-First Search (DFS)

e Visits a graph’s vertices by always moving from
last visited vertex to unvisited one, backtracks if
there is no adjacent unvisited vertex is available
e Uses a stack (or could use recursion)
— a vertex is pushed onto the stack when it’s reached for the first
time
— a vertex is popped off the stack when it becomes a dead end,
i.e., when there are no adjacent unvisited vertices

e “Redraws” graph in tree-like fashion (with tree
edges and back edges for undirected graph)

—A back edge is an edge of the graph that goes from
the current vertex to a previously visited vertex __ ° 2

(other than the current vertex's parent in the W
tree).

Notes on DFS
e DFS can be implemented with graphs represented as:
— adjacency matrix: ©(V?)
— adjacency list: O(|V/[+|E])
e Yields two distinct ordering of vertices:
— order in which vertices are first encountered (pushed onto
stack)
— order in which vertices become dead-ends (popped off
stack)
e Applications:
— checking connectivity, finding connected components
— checking acyclicity
— finding articulation points
— searching state-space of problems for solution (Al) > _: :

10

Pseudocode for DFS

ALGORITHM DFS(G)

/Implements a depth-first search traversal of a given graph
/Mnput: Graph G = (V, E)
/[[Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count « ()
for each vertex v in V do

if v is marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
//land numbers them in the order they are encountered
Ilvia global variable count
count « count + 1; mark v with count
for cach vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

Example: DFS traversal of undirected graph

DFS traversal stack: DFS tree:

(Y
® 0

11

