

MA/CSSE 473 Day 10

- Solution to Yesterday's quiz
- Student questions?
- Next Session, come prepared to discuss the interview with Donald Knuth (linked from the schedule page, Session 11)
 - and Brute Force Algorithms
 - and amortization
- Today:
 - Cryptography Introduction
 - RSA

We'll only scratch the surface, but there is MA/CSSE 479

CRYPTOGRAPHY INTRODUCTION

Cryptography Scenario

- You want to transmit a message **m** to me
 - You encode the message and send it to me in a form e(m) that I can readily decode by running d(e(m)),
 - Hopefully, a form that an eavesdropper has little chance of decoding
- Private-key protocols
 - You and I meet beforehand and agree on **e** and **d**.
- Public-key protocols
 - I publish an e for which I know the d, but it is very difficult for someone else to guess the d.
 - Then you can use e to encode messages that only I* can decode

* and anyone else who can figure out what d is, based on e

Messages can be integers

- Since a message is a sequence of bits ...
- We can consider the message to be a sequence of **b**-bit integers (where **b** is fairly large), and encode each of those integers.
- Here we focus on encoding and decoding a single integer.

RSA Public-key Cryptography

- Rivest-Shamir-Adleman (1977)
 - References: Weiss, Section 7.4
 - Dasgupta, Pages 33-34
- Consider a message to be an integer modulo N, which has k bits (longer messages can be broken up into k-bit pieces)
- The encryption function will be a bijection on {0, 1, ..., N-1}, and the decryption function will be its inverse
- How to pick the N and the bijection?

bijection: a function f from a set X to a set Y with the property that for every y in Y, there is exactly one x in X such that f(x) = y. In other words, f is both one-to-one and onto.

N = p q

- Pick two large primes, **p** and **q**, and let **N** = **pq**.
- Property: If e is any number that is relatively prime to N' = (p-1)(q-1), then
 - the mapping $x \rightarrow x^e \mod N$ is a bijection on $\{0, 1, ..., N-1\}$, and
 - If d is the inverse of e mod N', then for all x in {0, 1, ..., N-1}, (xe) = x (mod N).
- We'll first apply this property, then prove it.

Public and Private Keys

- The first (bijection) property tells us that
 x→x^e mod N is a reasonable way to encode
 messages, since no information is lost
 - If you publish (N, e) as your public key, anyone can encode and send messages to you
- The second tells how to decrypt a message
 - When you receive an encoded message m', you can decode it by calculating (m')^d mod N.

Example (from Wikipedia)

- p=61, q=53. Compute N = pq = 3233
- N' = (p-1)(q-1) = 60.52 = 3120
- Choose e=17 (relatively prime to 3120)
- Compute multiplicative inverse of 17 (mod 3120)
 - Thus $\mathbf{d} = 2753$ (evidence: 17.2753 = 46801 = 1 + 15.3120)
- To encrypt m=123, take 123¹⁷ (mod 3233) = 855
- To decrypt 855, take 855²⁷⁵³ (mod 3233) = 123
- In practice, we would use much larger numbers for p and q.
- On exams, smaller numbers ©

Recap: RSA Public-key Cryptography

- Pick any two large primes, **p** and **q**, and let **N** = **pq**.
- Consider a message to be a number modulo N, a k-bit number (longer messages can be broken up into k-bit pieces)
- Property: If e is any number that is relatively prime to N' = (p-1)(q-1), then
 - the mapping x→x^e mod N is a bijection on {0, 1, ..., N-1}
 - If d is the inverse of e mod N', then for all x in {0, 1, ..., N-1}, (xe)^d ≡ x (mod N)
- We have applied the property; we should prove it
- Modular arithmetic properties will be used heavily in the proof!

• Don't put the next three slides online before the class meeting.

Proof of the property

- Property: If N=pq for two primes p and q, and if e is any number that is relatively prime to N' = (p-1)(q-1), then
 - the mapping \mathbf{x} → \mathbf{x} ^e mod \mathbf{N} is a bijection on {0, 1, ..., \mathbf{N} -1}
 - If d is the inverse of **e** mod **N'**, then for all \mathbf{x} in $\{0, 1, ..., \mathbf{N}\text{-}1\}$, $(\mathbf{x}^{\mathbf{e}})^{\mathbf{d}} \equiv \mathbf{x} \pmod{\mathbf{N}}$
- The second conclusion implies the first, so we prove the second one.

Proof of the property part 2

- Proving: If N=pq for two primes p and q, and if e is any number that is relatively prime to
 N' = (p-1)(q-1), then
 - If **d** is the inverse of **e** mod **N**' then for all **x** in $\{0, 1, ..., N-1\}$, $(\mathbf{x}^e)^d \equiv \mathbf{x} \pmod{N}$
- This is equivalent to $(\mathbf{x}^{\mathbf{e}})^{\mathbf{d}} \mathbf{x} \equiv 0 \pmod{\mathbf{N}}$. We show this.
- e is invertible mod N', because it is relatively prime to N'. Let d be e's inverse
- ed = 1 (mod (p-1)(q-1)), so there is an integer k such that ed = 1 + k(p-1)(q-1) [we could find k using Euclid]
- $\mathbf{x}^{\text{ed}} \mathbf{x} = \mathbf{x}^{1 + k(p-1)(q-1)} \mathbf{x}$. If we can show that $\mathbf{x}^{1 + k(p-1)(q-1)} - \mathbf{x} \equiv 0 \pmod{\mathbf{N}}$, then we'll be done.

Proof of the property part 3

- Left to show: If N=pq for two primes p and q, and if e is any number that is relatively prime to N' = (p-1)(q-1), then
 - $x^{1 + k(p-1)(q-1)} x \equiv 0 \text{ (mod N)}$
- By Fermat's Little Theorem, $\mathbf{x}^{\mathbf{p}-1} \equiv 1 \pmod{\mathbf{p}}$
 - so any power of $\mathbf{x}^{\mathbf{p}-1}$ (in particular $\mathbf{x}^{\mathbf{k}(\mathbf{p}-1)(\mathbf{q}-1)}$) is congruent to 1 (mod \mathbf{p}).
- Subtract 1 from both sides: $\mathbf{x}^{k(p-1)(q-1)}$ -1 is divisible by \mathbf{p} .
- Multiply by \mathbf{x} : $\mathbf{x}^{1+k(p-1)(q-1)} \mathbf{x}$ is divisible by \mathbf{p}
- **q** is also prime, so $\mathbf{x}^{1+\mathbf{k}(p-1)(q-1)} \mathbf{x}$ is divisible by **q**
- Since p and q are primes, anything divisible by both p and q is divisible by by pq = N.
- Conclusion: $(\mathbf{x}^e)^d = \mathbf{x}^{ed} = \mathbf{x}^{1+k(p-1)(q-1)} \equiv \mathbf{x} \pmod{N}$
- This is what we wanted to show.

RSA security

- Assumption (Factoring is hard!):
 - Given N, e, and x^e mod N, it is computationally intractable to determine x
 - What would it take to determine x?
- Presumably this will always be true if we choose N large enough
- But people have found other ways to attack RSA, by gathering additional information
- So these days, more sophisticated techniques are needed.
- MA/CSSE 479

Student questions

• On primality testing, RSA or anything else?