

## MA/CSSE 473 Day 07

- Student Questions
- Extended Euclid Algorithm, the "calculate forward, substitute backward" approach
- Modular Division
- Fermat's Little Theorem
- Intro to primality testing.



## Recap: Euclid's Algorithm for gcd

```
def euclid(a, b):
    """ INPUT: Two integers a and b with a >= b >= 0
    OUTPUT: gcd(a, b)"""
    if b == 0:
        return a
    return euclid(b, a % b)
```

Another place to read about modular arithmetic, including exponentiation and inverse: Weiss Sections 7.4-7.4.4

## recap: gcd and linear combinations

- Lemma: If d divides both a and b, and d = ax + by for some integers x and y, then d = gcd(a,b)
- Proof we did it last class session.



# Forward-backward Example: gcd (33, 14)

• 33 = 2\*14 + 5

• 14 = 2 \* 5 + 4

We want to find x and y such that 33x + 14y = 1

- 5 = 1 \* 4 + 1
- 4 = 4 \* 1 + 0, so gcd(33, 14) = 1.
- Now work backwards

A good place to stop and check!

- 1 = 5 4. Substitute 4 = 14 2\*5
- 1 = 5 (14 2\*5) = 3\*5 14. Substitute 5 = 33 2\*14:
- 1 = 3(33 2\*14) 14 = 3\*33 7\*14
- Thus x = 3 and y = -7 Done!



## **Extended Euclid Algorithm**

```
def euclidExtended(a, b):
    """ INPUT: Two integers a and b with a >= b >= 0
        OUTPUT: Integers x, y, d such that d = gcd(a, b)
            and d = ax + by"""
    print ("       ", a, b) # so we can see the process.
    if b == 0:
        return 1, 0, a
    x, y, d = euclidExtended(b, a % b)
    return y, x - a//b*y, d
```

- Proof that it works
  - I decided that it is a bit advanced for students who just saw Modular Arithmetic for the first time two sessions ago.
  - If you are interested, look up "extended Euclid proof"
  - We'll do a convincing example.

## Calculate Modular Inverse (if it exists)

- Assume that gcd(a, N) = 1. Define "inverse of a". Unique?
- The extended Euclid's algorithm gives us integers x and y such that ax + Ny = 1
- This implies  $ax \equiv 1 \pmod{N}$ , so x is the inverse of a
- Example: Find 14<sup>-1</sup> mod 33
  - We saw before that 3\*33 7\*14 = 1
  - $-7 \equiv 26 \pmod{33}$
  - Check: 14\*26 = 364 = 11\*33 + 1.
- If inverse mod N exists, it is unique
- Recall that running time for Euclid's algorithm is  $\Theta(k^3)$ , where k is the number of bits of N.

#### Modular division

- We can only divide b by a (modulo N) if N and
   a are relatively prime
- In that case  $b/a = b \cdot a^{-1}$
- What is the running time for modular division?

## **Primality Testing**

- The numbers 7, 17, 19, 71, and 79 are primes, but what about 717197179 (a typical social security number)?
- There are some tricks that might help. For example:
  - If n is even and not equal to 2, it's not prime
  - n is divisible by 3 iff the sum of its decimal digits is divisible by 3,
  - n is divisible by 5 iff it ends in 5 or 0
  - n is divisible by 7 iff  $\lfloor n/10 \rfloor$  2\*n%10 is divisible by 7
  - n is divisible by 11 iff
     (sum of n's odd digits) (sum of n's even digits)
     is divisible by 11.
  - when checking for factors, we only need to consider prime integers as candidates
  - When checking for prime factors, we only need to examine integers up to sqrt(n)

## **Primality testing**

- Factoring is harder than primality testing.
- Is there a way to tell whether a number is prime without actually factoring the number?

Like a few other things that we have done so far ion this course, this discussion follows Dasgupta, et. al., Algortihms (McGraw-Hill 2008)



## Fermat's Little Theorem (1640 AD)

- Formulation 1: If p is prime, then for every integer a with  $1 \le a < p$ ,  $a^{p-1} \equiv 1 \pmod{p}$
- Formulation 2: If p is prime, then for every integer a with 1 ≤ a <p, a<sup>p</sup> ≡ a (mod p)
- These are clearly equivalent.
  - How do we get from each to the other?
- We will examine a combinatorial proof of the first formulation.



#### Fermat's Little Theorem: Proof (part 1)

- Formulation 1: If p is prime, then for every number a with  $1 \le a < p$ ,  $a^{p-1} \equiv 1 \pmod{p}$
- Let S = {1, 2, ..., p-1}
- Lemma
  - For any nonzero integer a, multiplying all of the numbers in S by a (mod p) permutes S
  - I.e.  $\{a \cdot n \pmod{p} : n \in S\} = S$

| i  | 1 | 2 | 3 | 4 | 5 | 6 |
|----|---|---|---|---|---|---|
| 3i | 3 | 6 | 2 | 5 | 1 | 4 |

- **Example:** p=7, a=3.
- Proof of the lemma
  - Suppose that  $\mathbf{a} \cdot \mathbf{i} \equiv \mathbf{a} \cdot \mathbf{j} \pmod{\mathbf{p}}$ .
  - Since **p** is prime and  $\mathbf{a} \neq 0$ , **a** has an inverse.
  - Multiplying both sides by  $\mathbf{a}^{-1}$  yields  $\mathbf{i} \equiv \mathbf{j} \pmod{\mathbf{p}}$ .
  - Thus, multiplying the elements of S by a (mod p) takes each element to a different element of S.
  - Thus (by the pigeonhole principle), every number
     1..p-1 is a·i (mod p) for some i in S.

#### Fermat's Little Theorem: Proof (part 2)

- Formulation 1: If p is prime, then for every number a with 1 ≤ a < p,</li>
  - $\mathbf{a}^{\mathbf{p}-1} \equiv \mathbf{1} \pmod{\mathbf{p}}$
- Let S = {1, 2, ..., **p**-1}
- Recap of the Lemma:
   Multiplying all of the numbers in S
   by a (mod p) permutes S
- Therefore:
  - $\{1, 2, ..., p-1\} = \{a \cdot 1 \pmod{p}, a \cdot 2 \pmod{p}, ... a \cdot (p-1) \pmod{p}\}$
- Take the product of all of the elements on each side .
   (p-1)! ≡ a<sup>p-1</sup>(p-1)! (mod p)
- Since p is prime, (p-1)! is relatively prime to p, so we can divide both sides by it to get the desired result:
   a<sup>p-1</sup> ≡ 1 (mod p)

## Recap: Fermat's Little Theorem

- Formulation 1: If p is prime, then for every number a with  $1 \le a < p$ ,  $a^{p-1} \equiv 1 \pmod{p}$
- Formulation 2: If p is prime, then for every number a with  $1 \le a < p$ ,  $a^p \equiv a \pmod{p}$

Memorize this one. Know how to prove it.



## **Easy Primality Test?**

"composite"

means

"not prime"

- Is N prime?
- Pick some a with 1 < a < N
- Is  $a^{N-1} \equiv 1 \pmod{N}$ ?
- If so, N is prime; if not, N is composite
- Nice try, but...
  - Fermat's Little Theorem is not an "if and only if" condition.
  - It doesn't say what happens when N is not prime.
  - N may not be prime, but we might just happen to pick an a for which a<sup>N-1</sup>≡ 1 (mod N)
  - **Example:** 341 is not prime (it is 11.31), but  $2^{340} \equiv 1 \pmod{341}$
- Definition: We say that a number a passes the Fermat test
  if a<sup>N-1</sup> ≡ 1 (mod N). If a passes the Fermat test but N is composite,
  then a is called a Fermat liar, and N is a Fermat pseudoprime.
- We can hope that
  - if N is composite, then many values of a will fail the Fermat test
- It turns out that this hope is well-founded
- If any integer that is relatively prime to N fails the test, then at least half of the numbers a such that 1 ≤ a < N also fail it.</li>

## How many "Fermat liars"?

- If N is composite, suppose we randomly pick an a such that 1 ≤ a < N.</li>
- If gcd(a, N) = 1, how likely is it that  $a^{N-1}$  is  $\equiv 1 \pmod{n}$ ?
- If  $\mathbf{a}^{N-1} \not\equiv \mathbf{1} \pmod{N}$  for any  $\mathbf{a}$  that is relatively prime to N, then this must also be true for at least half of the choices of such  $\mathbf{a} < \mathbf{N}$ .
  - Let b be some number (if any exist) that passes the Fermat test, i.e.  $b^{N-1} \equiv 1 \pmod{N}$ .
  - Then the number a.b fails the test:
    - $(ab)^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1}$ , which is not congruent to 1 mod N.
  - Diagram on whiteboard.
  - For a fixed a, f: b→ab is a one-to-one function on the set of b's that pass the Fermat test,
  - so there are at least as many numbers that fail the Fermat test as pass it.
- Continued next session ...

