MA/CSSE 473
Day 05 ® o

L1
e ' O
<

Factors and Primes
Recursive division
algorithm

MA/CSSE 473 Day 05

e Student Questions
e One more proof by strong induction

e List of review topics | don’t plan to cover in
class

e Continue Arithmetic Algorithms
— Toward Integer Primality Testing and Factoring
— Efficient Integer Division Algorithm
— Modular Arithmetic intro

Quick look at review topics in textbook

REVIEW THREAD

Another Induction Example
Extended Binary Tree (EBT)

An Extended Binary tree is either
— an external node, or
— an (internal) root node and two
EBTs T, and Tg.
We draw internal nodes as circles and external nodes as squares.
— Generic picture and detailed picture.
This is simply an alternative way of viewing binary trees, in which

we view the null pointers as “places” where a search can end or
an element can be inserted.

A property of EBTs

e Property P(N): For any N>=0, any EBT with N internal nodes has
external nodes.

e Proof by strong induction, based on the recursive definition.
— A notation for this problem: IN(T), EN(T)

— Note that, like some other simple examples, this one can
also be done without induction.

— But the purpose of this exercise is practice with strong
induction, especially on binary trees.
e What is the crux of any induction proof?

— Finding a way to relate the properties for larger values (in
this case larger trees) to the property for smaller values
(smaller trees). Do the proof now.

Textbook Topics | Won't Cover in Class

e Chapter 1 topics that | will not discuss in detail
unless you have questions. They should be
review For some of them, there will be review
problems in the homework
— Sieve of Eratosthenes (all primes less than n)

— Algorithm Specification, Design, Proof, Coding
— Problem types : sorting, searching, string
processing, graph problems, combinatorial

problems, geometric problems, numerical
problems

— Data Structures: ArraylLists, LinkedLists, trees, e
- . ®

search trees, sets, dictionaries, v

Textbook Topics | Won't Cover*

e Chapter 2
— Empirical analysis of algorithms should be review

— | believe that we have covered everything else in
the chapter except amortized algorithms and
recurrence relations.

— We will discuss amortized algorithms later.

— Recurrence relations are covered in CSSE 230 and
MA 375. We'll review particular types as we
encounter them.

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 3 - Review
— Bubble sort, selection sort, and their analysis
— Sequential search and simple string matching

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 4 - Review
— Mergesort, quicksort, and their analysis
— Binary search
— Binary Tree Traversal Orders (pre, post, in, level)

*Unless you ask me to v

Textbook Topics | Won't Cover*

e Chapter 5 - Review
— Insertion Sort and its analysis
— Search, insert, delete in Binary Search treeTree
— AVL tree insertion and rebalance

e We will review the analysis of AVL trees.

*Unless you ask me to v

Interlude

WALLY , YOUR STATUS
REPORT IS JUST A
BUNCH OF BUZZWORDS
STRUNG TOGETHER.

www.dilbert.com scottadams@anlonm

I'VE BEEN GIVING
YOU THAT SAME
STATUS REPORT
EVERY LJEEK FOR
ELEVEN YEARS.

Ny

L

Copyright 2 2082 United Feature

Syndicate, |nc.

Ylalsa © 2002 United Foature Byndicate, Ino.

FIVE YEARS AGO YOU
ADOPTED IT AS OUR
MISSION
STATEMENT.

Heading toward Primality Testing

Integer Division

Modular arithmetic

Euclid's Algorithm

ARITHMETIC THREAD

FACTORING and PRIMALITY

e Two important problems

— FACTORING: Given a number N, express it as a product of its
prime factors

— PRIMALITY: Given a number N, determine whether it is
prime
e Where we will go with this eventually

Factoring is hard

e The best algorithms known so far require time that is exponential in
the number of bits of N

Primality testing is comparatively easy
— Asstrange disparity for these closely-related problems
— Exploited by cryptographic systems
e More on these problems later
— First, some more math and computational backgrounsli_ _: :

Recap: Arithmetic Run-times

For operations on two k-bit numbers:
Addition: ©(k)
Multiplication:

— Standard algorithm: 6(k?)

— "Gauss-enhanced": 8(k1?), but with a lot of
overhead.

Division: We won't ponder it in detail, but see
next slide: 6(k?)

Algorithm for Integer Division

def divide(x, vy):
wnw Tnput: Two non-negative integers x and y, where y>=1.
Output: The quotient and remainder when x is divided by y."""
if x = 0:
return 0, 0

g, r = divide(x // 2, y) # max recursive calls:

g, T =2 * q, 2 *r # number of bits in x

if x % 2 = 1:
r=r + 1

if r >= y: # note that all of the multiplications
g, r=qg+ 1, r -y # and divisions are by 2:

return , r # simple bit shifts

Let's work through divide(19, 4).

Analysis? - -

This idea has many uses
In this course we will use it for encryption and for primality testing

MODULAR ARITHMETIC

Modular arithmetic definitions

e x modulo N (written as x % N in many programming
languages) is the remainder when x is divided by N.
l.e.,

— Ifx=qgN+r, where0<r<N (g and r are unique!),
— then x modulo N is equal tor.

e x and y are congruent modulo N, which is written as

x=y (mod N), if and only if N divides (x-y).

— i.e., there is an integer k such that x-y = kN.

— In a context like this, a divides b means "divides with no
remainder", i.e. "a is a factor of b."

e Example: 253 =13 (mod 60),

253 =373 (mod 60) .

Modular arithmetic properties

Substitution rule

— Ifx=x"(mod N)andy=y' (mod N),
thenx+y=x"'+y' (mod N), and xy =x'y' (mod N)

Associativity

- X+(y+z)=(x+y)+z(modN)

Commutativity

— xy=yx (mod N)
Distributivity

— X(y+z) =xy +yz (mod N)

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k =
|—Iog N |,the number of bits in N), begin with regular
addition.

— Assume that x and y are in the range
soXx+yilsinrange

— If the sum is greater than N-1, subtract N.

— Running timeis© ()

e To multiply x and y modulo N, begin with regular
multiplication, which is quadratic in k.

)

— The result is in range and has at most bits.
— Compute the remainder when dividing by N, quadratice
time. So entire operationis ©() - e

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k =| log N—‘),
begin by doing regular addition.

— xandy arein the range 0 to N-1,
sox +yisinrange 0to 2N-2

— If the sum is greater than N-1, subtract N, else return x +y
— Runtimeis© (k)

e To multiply x and y, begin with regular multiplication,
which is quadratic in k.
— The result is in range 0 to (N-1)? so has at most 2k bits.

— Then compute the remainder when xy dividing by N, quadratic
time in k. So entire operation is 6(k?) == e

10

Modular Exponentiation

* In some cryptosystems, we need to compute
x¥ modulo N, where all three numbers are several
hundred bits long. Can it be done quickly?

e Can we simply take x¥ and then figure out the
remainder modulo N?

e Suppose x and y are only 20 bits long.
— XY is at least (219)2'9), which is about 10 million bits
long.
— Imagine how big it will be if y is a 500-bit number!

e To save space, we could repeatedly multiply by x,
taking the remainder modulo N each time.
e If y is 500 bits, then there would be 2°% bit multiplications. o e
e This algorithm is exponential in the length of y. ~=T = e
e Ouch! N/,

Modular Exponentiation Algorithm

def modexp i, v, N):
if y==0:
return 1
z = modexpix, v/Z2, U
1f y%2 ==
return (z*¥z) % N
return (¥*¥z*z) % N

Let k be the maximum number of bitsin x, y, or N

e The algorithm requires at most ____ recursive calls
e Eachcallis 6()
* So the overall algorithm is ©() -

11

Modular Exponentiation Algorithm

def modexp(x, v, N):
if y==0:
return 1
z = modexpix, v/2, N)
1f y%2 ==
return (z*z) % N
return (¥x*z*z) % N

Let n be the maximum number of bitsin x, y, or N

The algorithm requires at most k recursive calls
Each call is ©(k?)
So the overall algorithm is ©(k3) -

12

