

MA/CSSE 473 Day 05

- Student Questions
- One more proof by strong induction
- List of review topics I don't plan to cover in class
- Continue Arithmetic Algorithms
 - Toward Integer Primality Testing and Factoring
 - Efficient Integer Division Algorithm
 - Modular Arithmetic intro

Quick look at review topics in textbook

REVIEW THREAD

Another Induction Example Extended Binary Tree (EBT)

- An Extended Binary tree is either
 - an external node, or
 - an (internal) root node and two EBTs T_L and T_R .

- We draw internal nodes as circles and external nodes as squares.
 - Generic picture and detailed picture.
- This is simply an alternative way of viewing binary trees, in which
 we view the null pointers as "places" where a search can end or
 an element can be inserted.

A property of EBTs

- Property P(N): For any N>=0, any EBT with N internal nodes has external nodes.
- **Proof by strong induction**, based on the recursive definition.
 - A notation for this problem: IN(T), EN(T)
 - Note that, like some other simple examples, this one can also be done without induction.
 - But the purpose of this exercise is practice with strong induction, especially on binary trees.
- What is the crux of any induction proof?
 - Finding a way to relate the properties for larger values (in this case larger trees) to the property for smaller values (smaller trees). Do the proof now.

Textbook Topics I Won't Cover in Class

- Chapter 1 topics that I will not discuss in detail unless you have questions. They should be review For some of them, there will be review problems in the homework
 - Sieve of Eratosthenes (all primes less than n)
 - Algorithm Specification, Design, Proof, Coding
 - Problem types: sorting, searching, string processing, graph problems, combinatorial problems, geometric problems, numerical problems
 - Data Structures: ArrayLists, LinkedLists, trees, search trees, sets, dictionaries,

Textbook Topics I Won't Cover*

- Chapter 2
 - Empirical analysis of algorithms should be review
 - I believe that we have covered everything else in the chapter except amortized algorithms and recurrence relations.
 - We will discuss amortized algorithms later.
 - Recurrence relations are covered in CSSE 230 and MA 375. We'll review particular types as we encounter them.

*Unless you ask me to

Textbook Topics I Won't Cover*

- Chapter 3 Review
 - Bubble sort, selection sort, and their analysis
 - Sequential search and simple string matching

*Unless you ask me to

Textbook Topics I Won't Cover*

- Chapter 4 Review
 - Mergesort, quicksort, and their analysis
 - Binary search
 - Binary Tree Traversal Orders (pre, post, in, level)

*Unless you ask me to

Textbook Topics I Won't Cover*

- Chapter 5 Review
 - Insertion Sort and its analysis
 - Search, insert, delete in Binary Search treeTree
 - AVL tree insertion and rebalance
 - We will review the analysis of AVL trees.

*Unless you ask me to

FACTORING and PRIMALITY

- Two important problems
 - FACTORING: Given a number N, express it as a product of its prime factors
 - PRIMALITY: Given a number N, determine whether it is prime
- Where we will go with this eventually
 - Factoring is hard
 - The best algorithms known so far require time that is exponential in the number of bits of N
 - Primality testing is comparatively easy
 - A strange disparity for these closely-related problems
 - Exploited by cryptographic systems
- More on these problems later
 - First, some more math and computational background

Recap: Arithmetic Run-times

- For operations on two k-bit numbers:
- Addition: Θ(k)
- Multiplication:
 - Standard algorithm: Θ(k²)
 - "Gauss-enhanced": $\Theta(k^{1.59})$, but with a lot of overhead.
- Division: We won't ponder it in detail, but see next slide: Θ(k²)

Algorithm for Integer Division def divide(x, y): """ Input: Two non-negative integers x and y, where y>=1. Output: The quotient and remainder when x is divided by y.""" if x == 0: return 0, 0 q, r = divide(x // 2, y) # max recursive calls:q, r = 2 * q, 2 * r # number of bits in xif x % 2 == 1: r = r + 1**if** r >= y: # note that all of the multiplications q, r = q + 1, r - y # and divisions are by 2: return q, r simple bit shifts Let's work through divide(19, 4). Analysis?

Modular arithmetic definitions

- x modulo N (written as x % N in many programming languages) is the remainder when x is divided by N. I.e.,
 - If x = qN + r, where $0 \le r < N$ (q and r are unique!),
 - then **x modulo N** is equal to r.
- x and y are congruent modulo N, which is written as x≡y (mod N), if and only if N divides (x-y).
 - i.e., there is an integer k such that x-y = kN.
 - In a context like this, a divides b means "divides with no remainder", i.e. "a is a factor of b."
- Example: $253 \equiv 13 \pmod{60}$, $253 \equiv 373 \pmod{60}$

Modular arithmetic properties

- Substitution rule
 - If $x \equiv x' \pmod{N}$ and $y \equiv y' \pmod{N}$, then $x + y \equiv x' + y' \pmod{N}$, and $xy \equiv x'y' \pmod{N}$
- Associativity
 - $x + (y + z) \equiv (x + y) + z \pmod{N}$
- Commutativity
 - $xy \equiv yx \pmod{N}$
- Distributivity
 - $x(y+z) \equiv xy + yz \pmod{N}$

Modular Addition and Multiplication

- To add two integers x and y modulo N (where k = log N , the number of bits in N), begin with regular addition.
 - Assume that x and y are in the range______,
 so x + y is in range ______
 - If the sum is greater than N-1, subtract N.
 - Running time is Θ ()
- To **multiply** x and y modulo N, begin with regular multiplication, which is quadratic in k.
 - The result is in range _____ and has at most ____ bits.
 - Compute the remainder when dividing by N, quadratic time. So entire operation is $\Theta(\)$

Modular Addition and Multiplication

- To add two integers x and y modulo N (where k = \[\log N \]), begin by doing regular addition.
 - x and y are in the range 0 to N-1,so x + y is in range 0 to 2N-2
 - If the sum is greater than N-1, subtract N, else return x + y
 - Run time is Θ (k)
- To **multiply** x and y, begin with regular multiplication, which is quadratic in k.
 - The result is in range 0 to (N-1)² so has at most 2k bits.
 - Then compute the remainder when xy dividing by N, quadratic time in k. So entire operation is $\Theta(\mathbf{k}^2)$

Modular Exponentiation

- In some cryptosystems, we need to compute x^y modulo N, where all three numbers are several hundred bits long. Can it be done quickly?
- Can we simply take x^y and then figure out the remainder modulo N?
- Suppose x and y are only 20 bits long.
 - x^y is at least $(2^{19})^{(2^{19})}$, which is about 10 million bits long.
 - Imagine how big it will be if y is a 500-bit number!
- To save space, we could repeatedly multiply by x, taking the remainder modulo N each time.
 - If y is 500 bits, then there would be 2^{500} bit multiplications.
 - This algorithm is exponential in the length of y.
 - Ouch!

Modular Exponentiation Algorithm

```
def modexp(x, y, N):
    if y==0:
        return 1
    z = modexp(x, y/2, N)
    if y%2 == 0:
        return (z*z) % N
    return (x*z*z) % N
```

- Let k be the maximum number of bits in x, y, or N
- The algorithm requires at most ____ recursive calls
- Each call is Θ()
- So the overall algorithm is Θ()

Modular Exponentiation Algorithm

```
def modexp(x, y, N):
    if y==0:
        return 1
    z = modexp(x, y/2, N)
    if y%2 == 0:
        return (z*z) % N
    return (x*z*z) % N
```

- Let n be the maximum number of bits in x, y, or N
- The algorithm requires at most **k** recursive calls
- Each call is $\Theta(k^2)$
- So the overall algorithm is Θ(k³)

