MA/CSSE 473 Summer 2017 Final exam specification (Last updated August 16, 2017)
Resources allowed:
1. Calculator (not a smart phone, iPod, etc. that happens to have a calculator).
a. The only necessary operations are +, *, -, /, exponentiation. If modular operations are required, they will use numbers that are small enough so that that you should not need special modular functionality.
2. (Optional) one 8.5" x 11" sheet of paper with any handwritten notes you wish written on one side.
My goal is to write an exam that more than half of the class will finish in 75-90 minutes, but you will have the entire two hours if you need it. Material for the exam can come from the whole course. It will be a bit skewed toward material that happened later in the course than the material for the midterm exam.

Material Covered
· Background material from 230:
· [bookmark: _GoBack]Algorithms and analysis for implementing stacks, queues, linked lists, sequential lists, binary trees, binary search trees, binary heaps, dictionaries.
Recursion and mathematical induction.
Writing and solving simple recurrence relations, analysis of nested loops as in Weiss chapter 5 and its exercises. Applying the Master Theorem.
Fibonacci numbers. Sequential and binary search.
Well-known sorting methods: Insertion, selection, merge, quick, heap. Know algorithms and analysis.
Binary tree traversals: preorder, inorder, postorder, level order.
Formal definitions of O(N), Θ(N), etc.
· HW 0 - HW 14 (including the "not to turn in" problems)
· You can ignore the problems in HW 15-17.
· Assigned readings from Chapters 1-9, 11.1-11.3, 11.3, 12.1 from the textbook, as well as documents posted on Moodle that are listed on the Schedule page, and material from PowerPoint slides and class notes for sessions.
· More details below on specific algorithms you should know.

Do you know the details of this algorithm? Some questions will be checking to see whether you know and understand the details of specific algorithms. Here are examples of algorithms that you should be able to explain and discuss the results of what happens when they are executes with specific input data. Examples
· Addition, multiplication, exponentiation of integers (bit by bit, digit by digit), modular arithmetic.
· Euclid's algorithm for finding GCD
· Extended Euclid for finding modular inverse, and finding a linear combination that lead to GCD.
· Fermat's little theorem. Uses and limitations when doing primality testing.
· Sieve of Eratosthenes (L 1.1)
· Towers of Hanoi (L 2.4)
· Selection Sort, Bubble Sort, and their analysis (L 3.1)
· Sequential Search (L 3.2)
· Fast exponentiation (L 4.1)

Concepts, definitions, etc
· Graph representations (adj matrix, adj lists) (L 1.4)
· Graph definitions: edge, directed, head tail, digraph, loop, complete, dense, sparse, path, simple path, cycle, connected component (L 1.4)
· Efficiency: best case, worst, average, amortized (L 2.1)
· Asymptotic notation (O, Ω, Θ), including formal definition of big-O, limits and asymptotics (L 2.2)
· Nested loops and summation (L 2.3, W Chapter 5)
· Traveling Salesman problem, Knapsack Problem, Assignment problem (L 3.4)
· Master Theorem for divide-and-conquer algorithms. No need to memorize; I will give you the formulas(L 5.1)
· OO non-attacking queens
· Primality testing: Fermat and Miller-Rabin.
· Know how and why they work.
· Random prime number generation
· RSA Cryptography – how to encode and decode messages
· (need to be able to find modular inverses)
· DFS, BFS, topological sort
· Interpolation Search
· Permutation Generation:
· recursive minimal change,
· Johnson-Trotter,
· lexicographic
· Subset generation – Including Binary-reflected Gray Code
· Towers of Hanoi
· Closest Pair – divide-and-conquer algorithms
· QuickHull
· Shell’s Sort
· Strassen’s matrix multiplication algorithm
· Binary Trees, including the four standard traversals
· AVL Trees
· 2-3 Trees
· B-Trees (analysis, not algorithms for insertion)
· Presorting
· Gaussian Elimination
· Heaps and Priority Queues
· Heapsort
· Shell’s Sort
· Horner’s Rule
· Problem reduction (including LCM and path-counting)
· Nim
· Sorting by counting
· Horspool and Boyer-Moore string search algorithms
· Hash table implementation
· Optimal Binary Search Trees
· File compression and Huffman codes
· Prim's Algorithm for finding a MST (L 9.1)
· Kruskal Algorithm for finding a MST (L 9.2)
· Analysis of running time and proofs that these algorithms work.
· Disjoint sets and union-find problem (L 9.2)
· Skiplist insertion and deletion

