4/22/2012

CSSE 230 Day 17

Introduction to graphs
and their common representations

Hash Table Implementation

Reminders/Announcements

» Doublets partner evaluation due Wednesday at
noon
» WA6 due Thursday at 8
> One actual written problem
> Queens problem from Session 16
> A couple more methods for ThreadedBinarySearchTree
» EditorTrees Milestone 1 due Monday

- Recall that Milestone 1 requires much less than half of
the total project effort

» Exam 2 Tuesday May 8, 7-9 PM.

» Your questions?
- EditorTree requirements
> Anything else

Graphs

»» Terminology
Representations
Algorithms

Example
Graph

Example:

A graph G = (V,E) is composed of:
V: set of vertices
E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices

V={ab,c,d.e}

E=
{(a,b),(a,c),(a,d),
(b.e),(c,d),(c.e),
(de)}

4/22/2012

Graph Terminology

also called
/ “neighbors”

* adjacent vertices: connected by an edge

* degree (of a vertex): # of adjacent vertices
2 deg(v) = 2(# edges)

veV

3

+ Since adjacent vertices
each count the
adjoining edge, it will
be counted twice

©, O,

Continuing Graph Terminology]

connected component: maximal connected
subgraph. E.g., the graph below has 3 connected
components.

P e o e . e S T S EE S S e EE S e S e S S e o

v

4/22/2012

More Connectivity
n = #vertices
m = #edges

For a tree m = n - 1|A necessary but not sufficient
condition for a graph to be a tree.

If m <n -1, Gisnot connected

n=
m=

o
3

We represent vertices using a collection of
objects

» Each Vertex object contains information
about itself

» Examples:
> City name
> |IP address
- People in a social network

4/22/2012

There are many options for representing edges 2-4

of a graph

» Adjacency matrix
» Adjacency list. Each vertex stores...
- pointers to other vertices?
- named vertices using a HashMap<Name,Vertex>

- An index into an array of the Vertex objectsl
n each case, we need a way to store the vertex
collection

» Edge list

To consider:
Why not just use a triangular “matrix”?

Does a boolean adjacency matrix make sense?
What are the problems with the object-oriented approach?

Sample graph problem: Weighted Shortest Path

» What’s the cost of the shortest path from A to
each of the other nodes in the graph?

4/22/2012

4/22/2012

Largest Connected Component

» What’s the size of the largest connected
component?

For much more on graphs, take MA/CSSE 473 or MA 477

Hashing

»» Efficiently putting 5 pounds of

data in a 20 pound bag

HashMap is a fast approach to dictionary storage 5

» Functionality: A HashMap implements a finite
function H: K-V

- domain of H is the set K of possible keys,
> range is the set V of possible values

» Main operations: put(k, v), get(k), remove(k)

» Representation: Actual table data is stored in a
large array of key-value pairs

» A HashSet uses a HashMap internally
- Pay attention to keys; ignore the values.

- with a good “hash function”

> and a large storage array On
average

» Speed: Insertion and lookup are coitant time

First approach: Direct Address Table

direct access table
collection i, T

3 » If we have a collection of n key-value

. i pairs whose keys are unique integers in
N [T the range 0.. m-1, where m >=n,
0.
kx| » then we can store the items in a direct
o address table, T[m],

3 o where T[k] is either null or contains the

key-value pair for key k.

LI
(]
]

Contents of this

f(')iﬁrf I\aﬂfrﬁ;’m » Searching a direct address table is
University of clearly an O(1) operation:

Western - if T[k] is not null, get(k) returns
Australia. T[k].value

Adapted by - otherwise returns null

Claude

Anderson

4/22/2012

First approach: Direct Address Table

direct access table
collection T

» There are two main constraints:
i 1. keys must be positive integers

i 2. the set of possible keys must be
m severely bounded

- largest key must be less than table size

The second constraint is often
impossible to meet

And what if the domain of our map is
some non-integer type?

We attempt to find a unique integer for each key 6
by applying a hashCode() function ...

key = [iEH 866 OH = integer

Starting
point for
determining
W indexin the
A good hashCode() function § array for

evenly distributes the keys, like: JIZIrETm . o 0
has its own
hashCode("ate")= 48594983 hashCodeg | Whatcan
hashCode("ape")= 76849201 method. go wrong?
hashCode("awe") = 14893202 Default

method is
inherited
from Object
class.

4/22/2012

...and then take that integer mod the table size
(m) to get an index into the array.

» Example: if m = 100:

->83
=201
->36

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(“awe”) = 1489036

Index is calculated from the object itself, not 7-8
from a comparison with other objects in table

» Every Java object has a hashCode

method that returns an integer H
o It uses H % m as the index into the array

82
84

> Unless this position is already occupied

——

4/22/2012

Object implements a default hashCode method

» Should we just inherit it?
» JDK classes override the hashCode() method

» If you plan to use instances of your class as
keys in a hash table, you probably should
too!

Choosing a hashCode() method for a class

» Should be fast to compute

» Should distribute keys as evenly as possible

» These two goals are often contradictory; we
need to achieve a balance

4/22/2012

10

A simple hash function for strings is a function
that uses every character in its computaton

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total + s.charAt(i);
return Math.abs (total);
}

» Advantages?

» Disadvantages?

A better hash function for Strings also uses
place value, but with a base that’s prime

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*23 + s.charAt (i);
return Math.abs (total);
}

» Spreads out the values more, and anagrams not an issue.
» We can't entirely avoid collisions. Why?
» What about overflow during computation?

» Note: String already has a reasonable hashCode ()
method; we don't have to write it ourselves.

4/22/2012

11

Hash Table Caveats 9

» Objects that are equal (based on the equals
m?thod) MUST have the same hashCode
values

» As much as possible, different objects should
have different hashCodes

» Beware of mutable keys!
> Python disallows mutable keys

» Hash tables don’t maintain sorted order
> So what’s cost to find min or max element?

Collisions are Inevitable

» A hash table implementation (like HashMap)
provides a “collision resolution mechanism”

» There are a variety of approaches to collision
resolution

» Fewer collisions lead to faster performance

4/22/2012

12

Collision Avoidance

» Just make hashCode unique?

» Possible key values >> capacity of table
- Example: A key may be an array of 16 characters
- How many different values could there be?

» Table size << possible hashCode values

» hashCode values are taken mod the current
table size

10

Collision Resolution: Linear Probing

» Collision? Use the next available space:
> Try H+1, H+2, H+3, ...
> Wrap around when we reach the end of the array

» Problem: Clustering

» Animation:

11

4/22/2012

13

4/22/2012

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 106) = 9
Afterinsert 89 Afterinsert 18 Afterinsert 49 Afterinsert 58 After insert 9
Figure 20.4 0 0 i ”
Linear probing hash
table after each 1 58 58
insertion 2 9
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesle)

Linear Probing Efficiency 12

» Depends on Load Factor, A:
- Ratio of the number of items stored to table size
c0<A<.

» For a given A, what is the expected number
of probes before an empty location is found?

14

Rough Analysis of Linear Probing 13

» For a given A, what is the expected number
of probes before an empty location is found?

» Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

» Then the probability that a given cell is full is
A and probability that a given cell is empty is
1-A.

» What’s the expected number?

= 1
p—1lrq _ —
> X1 - N)p T
p=1
Better Analysis of Linear Probing 14

» “Equally likely" probability is not realistic

» Clustering!

- Blocks of occupied cells are formed

> Any collision in a block makes the block bigger
» Two sources of collisions:

> ldentical hash values

> Hash values that hit a cluster

» Actual average number of probes for large A:

2 (1 @)

For a proof, see Knuth, The Art of Computer Programming, Vol 3:

Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

4/22/2012

15

Why consider linear probing?

» Easy to implement
» Simple code has fast run time per probe
» Works well when load is low

- It could be more efficient to just get a bigger table
and compute new locations for each item when
table starts to fill.

> Typically done in practice: rehash to an array that is
double in size once the load factor goes over 0.75

» What about other fast, easy-to-implement
strategies?

Quadratic Probing

» Linear probing:
> Collision at H? Try H, H+1, H+2, H+3,...
- Guaranteed to succeed if array not completely full?

» Quadratic probing:
> Collision at H? Try H, H+12. H+22, H+32, ...

> Eliminates primary clustering, but can cause
“secondary clustering”

> Will it always succeed?

4/22/2012

16

Quadratic Probing Tricks (1/2)

» Choose a prime number p for the array size
» Then if A < 0.5:
> Guaranteed insertion
- If there is a “hole”, we’ll find it
> No cell is probed twice

» See proof of Theorem 20.4 (done in CSSE
473):

- Suppose that we repeat a probe before trying more
than half the slots in the table

> See that this leads to a contradiction
- Contradicts fact that the table size is prime

15

Quadratic Probing Tricks (2/2)

» Use an algebraic trick to calculate next index
to try

- Replaces mod and general multiplication

- Difference between successive probes yields:
- Probe ilocation, H, = (H_, + 2i-1)% M

> Just use bit shift to “multiply” i by 2

> Don’t need mod, since i is at most M/2, so

- probeloc= probeloc + (i << 1) - 1;
if (probelLoc >= M)
probeloc -= M;

4/22/2012

17

Quadpratic probing analysis

» No one has been able to analyze it!

» Experimental data shows that it works well

> Provided that the array size is prime, and is the
table is less than half full

Another Approach: Separate Chaining

» Use an array of linked lists
» How would that help resolve collisions?

4/22/2012

18

4/22/2012

Hashing with Chaining 16-18

» Use an array of linked lists

Work Time

Y WAG or Editor Trees

19

