
MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 12 (75 points total) Updated for Summer, 2017 

NOTE:  On January 31, 2017, I removed what were problems 1, 2, and 10.  Problem 10 will appear in HW 13. 

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 
make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 
which ones you need to do. 

8.4.2 [8.2.2] (Time efficiency of Warshall's Algorithm) 
8.4.6 [8.2.6]    (Use Warshall to determine whether a digraph is a dag) 
8.3.1 (Practice optimal static BST calculation) 
8.3.2 (Time and space efficiency of optimal BST calculation) 
8.3.5 (Root of Optimal tree) 
8.3.9 (Include unsuccessful searches in optimal BST calculation) 
8.3.8 (n2 algorithm for optimalBST. Not for the faint of heart!) 
------ For the frequencies of the Day 33 class example (AEIOU), find the optimal tree if we consider  
                            only successful searches (set all bi to 0) 

Problems to write up and turn in:   

1. (10) 8.1.12 [ 8.1.10] (World Series odds)  

Problem 1 previous questions and answers from Piazza: 
Q: In the question, there is a statement that let P(i, j) be the probability of A winning the series if A needs i more games to win the 
series and B needs j more games to win the series.Does it means that P(i, j) represents the probability that A has already won (n-i) 
games and B has already won (n-j) games? 
A: Yes 

2.  (  5)  8.4.3 [8.2.3] (Warshall with no extra memory use) 
 

3. (10)  8.4.4 [8.2.4] (More efficient Warshall inner loop) 
 

4. (25)    Optimal static BST problem:  described below.  
                                       Part (d) is extra credit.  Not many people have gotten it in past terms.  

 In the past, a number of students have said that this problem is long and difficult, especially  
 part a. I have placed on Moodle an excerpt from the original source from which I got this  
                                             example.  Also note that there is some relevant Python code linked from the schedule page  
                                             

Problem 4 previous questions and answers from Piazza: 
Q: In the question, there is a statement that let P(i, j) be the probability of A winning the series if A needs i more games to win the 
series and B needs j more games to win the series.Does it means that P(i, j) represents the probability that A has already won (n-i) 
games and B has already won (n-j) games? 
A: Yes 
 
Q: I have been really struggling with the inductive proof using the recursive formulation on question 3 of this assignment. I was 
wondering if anyone could provide a little guidance in where to start with this section of the problem. Or maybe if you found some 
papers online that might be able to help as well. I just think I am a little bit confused on where to start out. Any help would be much 



appreciated. Thanks. 
TA answer: In the problem description, two definitions for C(T) are given - one is the recurrence in part (a) of the problem, 
and the other is in large print above the table. Your job (as indicated in part (a)) is to show that these definitions are equal. 
If you write this equivalence out and proceed through the usual steps for a summation-based induction proof (the solution 
guide for problem 10 may help), you should be able to construct the proof required here. 
Instructor answer: I agree with what Orion wrote.  The main reason for part a (other than practice with induction, which is 
always a good thing) is that it will make you look hard at the details of the algorithm.  Trying this problem before you have 
made a good effort to understand the algorithm is likely to lead to frustration.  
I am certainly aware that this problem (all three parts) is one of the more difficult problems from the course. It may take 
you a while to figure everything out.  Don't skip reading the excerpt from the Reingold data structures book that is on 
Moodle. 
 
Q: For the example of AEIOU with the tree as I as the root and so on given, I got C = 985 using the summation formula. 
The first sum (of the ai s) I got 306 and the sum of the bi s I got 679. Is it possible that I drew the tree wrong? Does it matter if U and 
A are left or right children of their parents? Should A be the farthest left and U be farthest right? So I just tried it with A farthest left 
and U farthest right, and that worked, so the order does matter.  
A: The whole idea here is to find an optimal static BST (emphasis on the S).  If the tree is not a BST, there is no purpose in having it 
be a tree at all, since when searching we could not eliminate one side of the tree by looking at the key in the root., So smaller values 
must always be left of larger values. 
 
 
 
5. (10)  8.3.3 (Optimal static BST from root table)  You may do this for the “successful searches only”  

                                        approach form the Levitin textbook if you prefer. 
 

6. (  5)  8.3.4 (Sum for optimalBST in constant time). 
 

7. (10)  8.3.6 (optimalBST--successful search only--if all probabilities equal) 
 

 
Optimal static BST Dynamic Programming Problem details 
 
In a binary search tree, the key of each node in the left subtree is smaller than the key of the root, and the key of each node 
in the right subtree is larger than the root.  The same property holds for each subtree.  Section 8.3 discusses a dynamic 
programming algorithm to find an optimal static tree if only successful searches are taken into account.  In class (Days 28-
29 in Winter, 2016-17) we discussed a modified algorithm that also takes unsuccessful searches into account.  This basis 
for the approach used in class is from Reingold and Hansen, Data Structures.  That section of that book is posted on 
Moodle. 

Suppose that we have a static set of N keys K1, K2, … , Kn (in increasing order), and that we have collected statistics about 
the frequency of searches for each key and for items in each “gap” between keys (i.e. each place that an unsuccessful 
search can end up). 

For i = 1 ... n, let ai be the frequency of searches that end successfully at Ki. 

For i = 1 ... n-1, let bi be the frequency of unsuccessful searches for all "missing keys" that are between Ki and Ki+1 (also, 
b0 is the frequency of searches for keys smaller than K1, and bn is the frequency for keys that are larger than Kn).   

We build an extended BST T (see Figure 4.5 for a diagram of an extended tree) whose internal nodes contain the N keys, 
K1, …, Kn.  Let xi be the depth of the node containing Ki, and let yi be the depth of the “external node” that represents the 
gap between Ki and Ki+1 (where y0 and yn are the depths of the leftmost and rightmost external nodes of T). Recall that the 
depth of a tree's root is 0.  The optimal tree for the given keys and search frequencies is one that minimizes the weighted 
path length  C(T), where C is defined by  
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For example, in class (if it is summer, read the Reingold book excerpt) we considered the following data: 

i Ki ai bi 
0   0 
1 A 32 34 
2 E 42 38 
3 I 26 58 
4 O 32 95 
5 U 12 21 

 
If we choose to build the BST with I as the root, E and O as I’s children, A as E’s child, and U as O’s child, then C = 948, 
and the average search length is 948/390 = 2.43 (you should verify this, to check your understanding of the formula for 
C). It turns out that this tree is not optimal.   Note that in this example, a1 (32) is the frequency that the search is for A, 
while b1 (34) is the frequency that the value being searched for is between A and E 

In class we discussed  a dynamic programming algorithm that finds a tree that minimizes C for any set of n keys and 2n+1 
associated frequencies.   It uses an alternate, recursive, formulation of C:   

 
(a) (10) The recursive formulation: Let T be a BST. If T is empty, then C(T) = 0.  Otherwise T has a root and two 
subtrees TLand TR.  Then C(T) = C(TL) + C(TR) + sum(ai, i=1..n) + sum(bi,i=0..n).  Show by induction that this recursive 
definition of C(T) is equivalent to the summation definition given above. [The recursive definition is used in the code 
provided online (linked from the schedule page)]. 

(b) (5) The algorithm and a Python implementation are provided, along with a table of final values for the above inputs. 
Use the information from that table to draw the optimal tree. 

(c)  (10) What is the big-theta running time for the optimal-tree-generating algorithm (the algorithm that generates the root 
table from the frequency tables)?  Show your computations that lead you to this conclusion 

(d)  (10) (Part (d) is extra credit.  Not many people have gotten it in past terms  Find a way to improve the given 
algorithm (the algorithm that generates the root table from the frequency tables) so that it has a smaller big-theta running 
time, and show that it really is smaller. 
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