MA/CSSE 473 – Design and Analysis of Algorithms
Homework 10 (70 points total) Updated for Summer, 2016
Problems for enlightenment/practice/review (not to turn in, but you should think about them):
6.1.1 [6.1.2]	(closest numbers in an array with pre-sorting)
6.1.2 [6.1.3]	(intersection with pre-sorting)
6.1.8 [6.1.10]	(open intervals common point)
6.1.11	(anagram detection)
6.2.8ab	(Gauss-Jordan elimination)
6.3.9	(Range of numbers in a 2-3 tree)
6.5.3	(efficiency of Horner's rule)
6.5.4	(example of Horner's rule and synthetic division)
7.1.7	(virtual initialization)
Problems to write up and turn in:
1. (10) 6.1.5 [6.1.7]	(to sort or not to sort)
2. (10) 6.2.8c	(compare Gaussian Elimination to Gauss-Jordan) You should compute and compare actual number of multiplications, not just say that both are Θ(n^3). Use division when you compare.
3. (6) 6.3.7	(2-3 tree construction and efficiency) Show the steps in the construction and show
 your calculation of the average key comparisons.
4. (3) 6.3.8 (2-3 tree vs. binary tree). Include a proof if it is true, or a counterexample if it is false.
5. (3) 6.3.9 (range of a 2-3 tree)
6. (20) Not in book (sum of heights of nodes in a full tree) In this problem, we consider completely full binary
 trees with N nodes and height H (so that N = 2H+1 – 1)

 (a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be expressed as .
 (b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is
 N - H - 1. You may base your proof on the summation from part (a) (so you don't need
 to refer to trees at all), or you may do a "standard" binary tree induction based on the
 heights of the trees, using the definition that a non-empty binary tree has a root plus left
 and right subtrees. I find the tree approach more straightforward, but you may use the
 summation if you prefer.
(c) (3 points) What is the big Θ estimate for the sum of the depths of all of the nodes in such a tree?
(d) (2 points) How does the result of parts (b) and (c) apply to Heapsort analysis?
 Example of height and depth sums: Consider a full tree with height 2 (7 nodes).
 Heights: root:2, leaves: 0. Sum of all heights: 1*2 + 2*1 + 4*0 = 3.
 Depths: root: 0, leaves: 2. Sum of all depths: 1*0 + 2*1 + 4*2 = 10.
 [Response to a 201640 student question on Piazza: You should compare the naive approach to building the
 heap in preparation for heapsort (inserting the elements one at a time, Levitin calls it heaptopdown) vs. the
 more efficient approach (Levitin calls it heapbottomup) approach. Weiss has more details in Chapter
 21. Next, what is the impact of the heap-building algorithm in the running time of the entire heapsort
 algorithm?
7. (10) 6.4.12 [6.4.11]	(spaghetti sort)
8. (4) 6.5.10 [6.5.9]	(Use Horner's rule for this particular case?)
9. (10) 7.1.6	(ancestry problem). You may NOT assume any of the following:
· The tree is binary
[bookmark: _GoBack]· The tree is a search tree (i.e. that the elements are in some particular order)
· The tree is balanced in any way.

The tree for this problem is simply a connected directed graph with no cycles and a single source node (the root).
image1.wmf
å

=

-

H

k

k

H

k

0

2

oleObject1.bin

