
MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 04 – 75 points Updated for Summer, 2014 

Most of these problems are variations on the "Tiling with Trominoes" example from Day 5 class.  For another 

brief discussion of this example, see http://www.cut-the-knot.org/Curriculum/Geometry/Tromino.shtml  

I have placed on Moodle an excerpt from the book on which my in-class discussion was based. 

Here is pseudocode for the tiling algorithm from class.  Many details are omitted, but it conveys the idea. 

def tileWithTrominoes(n, m): 

    """n is the dimension of the deficient board to be tiled, and assumed to be a power of 2.   

       m gives the location of the missing square that makes the board deficient.""" 

    if n == 2: 

        # place the tromino so it covers the three squares 

        return 

    # Consider the four squares in the center of the board. 

    # Three of them are in quadrants of the board that do  

    # not contain m.  Place a tromino on them.  Now let 

    # m1, m2, m3, and m4 be m and the three squares just covered. 

 

    tileWithTrominoes (n/2, m1)  # assume that we have a mechanism 

    tileWithTrominoes (n/2, m2)  # for translating these tilings 

    tileWithTrominoes (n/2, m3)  # to the appropriate quadrants 

    tileWithTrominoes (n/2, m4)  # of the original board. 

   

1. (5) Write a recurrence relation for the running time of this algorithm, and use the Master Theorem to show that its 

solution is Ѳ(n2).  Thanks to Mike Jones for the following additional Master Theorem reference: 

http://www.math.dartmouth.edu/archive/m19w03/public_html/Section5-2.pdf  

 

2. (2) Show that no 99 deficient rectangular board can be tiled with trominoes. 

 

3.  (8) Show that a 55 board with the upper-left corner square missing can be tiled with trominoes. 

 

4. (10) Show a deficient 55 board that cannot be tiled with trominoes, and prove that this board cannot be tiled. 

 

5. (5) Show that any 2i3j board (not deficient) can be tiled with trominoes, for all positive integers i and j. 

 

 

6. (10) A 2n  2n L-shape is a figure of the form   with no missing squares, or it is a  rotation of this figure by 

a multiple of 90°. Write a recursive algorithm that tiles any 2n  2n L-shape with trominoes.  The recursive calls 

should tile smaller L-shapes.  You may express it in English, pseudo code, or code from any programming language 

that is likely to be known by most people in this course.  Feel free to use diagrams as part of your algorithm 

description. 

 

7. (10) Use the preceding exercise as the basis for a different algorithm for tiling (with trominoes) any 2n  2n deficient 

rectangular board with trominoes.   

 

  

http://www.cut-the-knot.org/Curriculum/Geometry/Tromino.shtml
http://www.math.dartmouth.edu/archive/m19w03/public_html/Section5-2.pdf


 

8.  (10) Show that any deficient 77 board can be tiled with trominoes.  There will be several different cases, depending 

on the location of the missing square.  You are allowed to use the results of some of the previous problems.   

 

9. (15)  More induction practice.  A binary tree  T is either empty, or it has a distinguished node called the root plus two 

disjoint subtrees TL and TR, which are both binary trees (know at the left and right subtrees of T). 

a. (10 points) Use (strong) mathematical induction to prove the following properties of rooted binary trees:   If a 

binary tree has leaves L1, L2,  …, LM whose depths (distance from the tree’s root) are d1, d2, …, dM, 

respectively, then 

∑ 2−𝑑𝑖𝑀
𝑖=1  ≤ 1.  You may want to draw a few tree shapes to convince yourself that it is true before you prove 

it.  I suggest using as the basis for your induction the definition of binary tree as either empty or a root with 

two binary subtrees. 

b. (5 points) Give a condition on the tree shape that is necessary and sufficient for replacing the “less than or 

equal to” sign in the statement with an “equals” sign.  You do not have to supply a proof for this part. 

 


