
MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 10 (70 points total)  Updated for Summer, 2014 

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

AS usual, how many of them you need to do serious work on depends on you and your background.  I do not 

want to make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure 

out which ones you need to do. 

6.1.1 [6.1.2] (closest numbers in an array with pre-sorting) 

6.1.2 [6.1.3] (intersection with pre-sorting) 

6.1.8 [6.1.10] (open intervals common point) 

6.1.11 (anagram detection) 

6.2.8ab (Gauss-Jordan elimination) 

6.3.9 (Range of numbers in a 2-3 tree) 

6.5.3 (efficiency of Horner's rule) 

6.5.4 (example of Horner's rule and synthetic division) 

7.1.7 (virtual initialization) 

Problems to write up and turn in: 
1. (10)  6.1.5 [6.1.7] (to sort or not to sort)   

2. (10)  6.2.8c (compare Gaussian Elimination to Gauss-Jordan) You should compute and compare actual 

number of multiplications, not just say that both are Θ(n^3).  Use division when you compare. 

3. (  6)  6.3.7 (2-3 tree construction and efficiency) 

4. (20)   Not in book       (sum of heights of nodes in a full tree) In this problem, we consider completely full binary  

                                        trees with N  nodes and height H   (so that N = 2H+1 – 1 )  

 

                 (a) (5 points) Show that the sum of the heights of all of the nodes of such a tree can be  

                        expressed as  

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 (b) (10 points) Prove by induction on H that the above sum of the heights of the nodes is  

       N - H - 1.  You may base your proof on the summation from part (a) (so you don't need  

       to refer to trees at all), or you may do a "standard" binary tree induction based on the  

       heights of the trees, using the definition that a non-empty binary tree has a root plus left  

       and right subtrees. I find the tree approach more straightforward, but you may use the  

       summation if you prefer. 

(c) (3 points) What is the big Θ estimate for the  sum of the depths of all of the nodes in such 

a  tree?   

(d) (2 points) How does the result of parts (b) and (c)  apply to Heapsort analysis? 

      Example of height and depth sums:  Consider  a full tree with height 2 (7 nodes). 

      Heights:   root:2, leaves: 0.  Sum of all heights:  1*2 + 2*1 + 4*0 = 3. 

      Depths:  root: 0, leaves: 2.   Sum of all depths:  1*0  + 2*1 + 4*2 = 10. 

5. (10)  6.4.12 [6.4.11] (spaghetti sort) 

6. (  4) 6.5.10 [ 6.5.9] (Use Horner's rule for this particular case?) 

7. (10)  7.1.6 (ancestry problem).  You may NOT assume any of the following: 

·         The tree is binary 
·         The tree is a search tree (i.e. that the elements are in some particular order) 
·         The tree is balanced in any way. 
 



The tree for this problem is simply a connected directed graph with no cycles and a single source node (the root). 



MA/CSSE 473  HW 10 textbook problems and hints 

1. Problem 6.1.5 [6.1.7] (10) 

 

Author's hint: 

 

Problem 2: 6.28c ( 10)  

 

Students are only required to do part c.  I put the rest here for context.  You should compute and compare actual 

number of multiplications, not just say that both are Θ(n^3).  Use division when you compare. 

  



Author's hint: 

 

Problem 3   6.3.7 (6)   

 

Author's hint: 

 

Problem 4  (20) not from textbook 

 



Problem  5  6.4.12 [6.4.11] (10)  

 

Author's hint: 

 

Problem 6    6.5.10 [6.5.9]   (4)   

 

Author's hint: 

 

Problem 7    7.1.6    (10)   

 

Author's hint:  

 

Instructor notes 

  



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 11 (72 points total)  Updated for Summer, 2014 

This is probably the longest assignment of the course, and it has some difficult problems.  Start early!  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do. 

7.2.2 [7.2.2] (Horspool for patterns in DNA) 

7.2.5 [7.2.5] (is there a case where Horspool does more comparisons than brute force?) 

7.2.9 [7.2.9] (left-to-right checking OK after a single character match in Horspool, Boyer-Moore?) 

7.3.1 [7.3.1] (insert specific keys into hash table with specific hash function and separate chaining) 

8.1.1 [8.1.1] (Compare and contrast dynamic programming with divide-and-conquer) 

8.1.4 [8.1.9] (Space efficiency of dynamic programming for Binomial coefficients) 

 

 

Problems to write up and turn in: 

  

1. (  6)   7.2.3 [7.2.3] (Horspool for binary strings) 

 

2. (  9)  7.2.7 [7.2.7] (Boyer-Moore for binary strings) 

 

3. (  4)  7.2.8 [7.2.8] (does Boyer-Moore still work with just one table?) 

 

4. ( 8) 7.2.11 [not in 2nd ed]  (right cyclic shift)  3 points for part a, 5 for part b. 

You are given two strings S and T, each n characters long. You have to establish whether one of them is a right 

cyclic shift of the other. For example, PLEA is a right cyclic shift of LEAP, and vice versa. (Formally, T is a right 

cyclic shift of S if T can be obtained by concatenating the (n - i)-character suffix of S and the i-character prefix of s 

for some 1 ≤ i  ≤ n). 

a. Design a space-efficient algorithm for the task. Indicate the space and time efficiencies of your algorithm. 
b. Design a time-efficient algorithm for the task. Indicate the time and space efficiencies of your algorithm. 
 

5. (  5)  7.3.4 [7.3.4]  (probability that  n keys all hash to the same table location)  

 

6. (  6)  7.4.3[7.4.3] (minimum order of a B tree with no more than 3 disk accesses in a tree with 108 elements) 

 

 

The list of problems continues on next page 

  



7. (12) 8.1.10 [not in 2nd ed]  longest path in a DAG.  Note that the material from Section 8.1 of the third edition of 

Levitin is not in the second edition.  I have posted that section on ANGEL in the Reading Materials folder. 

 

8. (12) 8.1.11 [not in 2nd ed]  Maximum square submatrix.  See description above 

 

9. (10) 8.1.12 [ 8.1.10] (World Series odds) Note: In a 7-game series (such as the real American baseball World 

Series), the first team to win 4 games wins the series.  7 is the maximum number of games that can be played before 

one of the teams must win four games.  But if one team wins 4 games sooner, the series ends immediately. 

 

 



HW 11 textbook problems and hints 

Problem 1    7.2.3  (6)  (Horspool for binary strings) 

 

Author's hint: 

 

Problem 2    7.2.7  (9)  (Boyer-Moore for binary strings) 

 

 

Author's hint: 

 

 

  



Problem 3:    7.2.8  (4)  (does Boyer-Moore still work with just one table?) 

 

Author's hint: 

 

Problem 4:    7.2.11  (3, 5)  (right cyclic shift) 

 

Author's hint: 

 

 

Problem 5:   7.3.4 (5) (probability that n keys all hash to the same table location) 

 

Author's hint: 

 

  



Problem 6:   7.4.3 (6)  
(minimum order of a B tree that guarantees no more than 3 disk accesses in a tree with 108 elements) 

 
Author's hint: 

 

Problems  7-8  : 8.1.10,  8.1.11 (12 each) (Longest path in a dag, Maximum square submatrix) 
Note that the material from Section 8.1 of the 3rd edition of Levitin is not in the 2nd edition.  I have posted that section 

on ANGEL in the Reading Materials folder. 

 

Author's hint: 

 

  



Problem 9: 8.1.12 (10) (World Series odds)  Note from Claude: In a 7-game series (such as the real 

American baseball World Series), the first team to win 4 games wins the series.  7 is the maximum number of games that 

can be played before one of the teams must win four games.  But if one team wins 4 games sooner, the series ends 

immediately. 

 

Author's hint:  

 

Instructor note:  

In a 7-game series (such as the real American baseball World Series), the first team to win 4 games wins the series.  7 is 

the maximum number of games that can be played before one of the teams must win four games.  But if one team wins 

4 games sooner, the series ends immediately. 

 



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 12 (88 points total)  Updated for Summer, 2014 

When a problem is given by number, it is from the textbook.  1.1.2 means “problem 2 from section 1.1” .  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do. 

8.4.2 [8.2.2] (Time efficiency of Warshall's Algorithm) 

8.4.6 [8.2.6]    (Use Warshall to determine whether a digraph is a dag) 

8.3.1 (Practice optimal BST calculation) 

8.3.2 (Time and space efficiency of optimal BST calculation) 

8.3.5 (Root of Optimal tree) 

8.3.9 (Include unsuccessful searches in optimal BST calculation) 

8.3.8 (n2 algorithm for optimalBST. Not for the faint of heart!) 

------ For the frequencies of the Day 33 class example (AEIOU), find the optimal tree if we consider  

                            only successful searches (set all qi to 0) 

------ For the frequencies of the Day 33 class example (AEIOU), find the optimal tree if we consider  

                            only unsuccessful searches (set all pi to 0) 

 

 

Problems to write up and turn in:  (I have posted Levitin 3rd edition section 8.4 on Moodle) 

1. (  5)  8.4.3 [8.2.3] (Warshall with no extra memory use) 

2. (10)  8.4.4 [8.2.4] (More efficient Warshall inner loop) 

3. (25)    Optimal BST problem:  described below.  

                                       Part (d) is extra credit.  Not many people have gotten it in past terms.  
 In the past, a number of students have said that this problem is long and difficult, especially  

 part a. I have placed on Moodle an excerpt form the original source from which I got this  

                                             example.  Also note that there is some relevant Python code linked from the schedule page  

                                             (days 31 and 32 in Summer 2014). 

4. (10)  8.3.3 (Optimal BST from root table) 

5. (  5)  8.3.4 (Sum for optimalBST in constant time). 

6. (10)  8.3.6 (optimalBST--successful search only--if all probabilities equal) 

7. (  5)  8.3.11a  [8.3.10a] (Matrix chain multiplication)   Also think about parts (b) and (c), which may appear on a later  

                                               assignment or exam. 

8. (10)  8.4.7 [8.2.7]           (Floyd example) 

9. (  8)  8.4.8 [8.2.8]           (Floyd:  Do we need to save previous matrix?) 

 

 

 

Optimal BST Dynamic Programming Problem ( problem #3) 

 

In a binary search tree, the key of each node in the left subtree is smaller than the key of the root, and the key of each node 

in the right subtree is larger than the root.  The same property holds for each subtree.  Section 8.3 discusses a dynamic 



programming algorithm to find an optimal static tree if only successful searches are taken into account.  In class (Days 31-

32 in Fall, 2012) we discussed a modified algorithm that also takes unsuccessful searches into account. 

Suppose that we have a static set of N keys K1, K2, … , Kn (in increasing order), and that we have collected statistics about 

the frequency of searches for each key and for items in each “gap” between keys (i.e. each place that an unsuccessful 

search can end up). 

For i = 1 ... n, let ai be the frequency of searches that end successfully at Ki. 

For i = 1 ... n-1, let bi be the frequency of unsuccessful searches for all "missing keys" that are between Ki and Ki+1 (also, 

b0 is the frequency of searches for keys smaller than K1, and bn is the frequency for keys that are larger than Kn).   

We build an extended BST T (see Figure 4.5 for a diagram of an extended tree) whose internal nodes contain the N keys, 

K1, …, Kn.  Let xi be the depth of the node containing Ki, and let yi be the depth of the “external node” that represents the 

gap between Ki and Ki+1 (where y0 and yn are the depths of the leftmost and rightmost external nodes of T). Recall that the 

depth of a tree's root is 0.  The optimal tree for the given keys and search frequencies is one that minimizes the weighted 

path length  C(T), where C is defined by  
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For example, in class we considered the following data: 

i Ki ai bi 

0   0 

1 A 32 34 

2 E 42 38 

3 I 26 58 

4 O 32 95 

5 U 12 21 

 

If we choose to build the BST with I as the root, E and O as I’s children, A as E’s child, and U as O’s child, then C = 948, 

and the average search length is 948/390 = 2.43 (you should verify this, to check your understanding of the formula for 

C). It turns out that this tree is not optimal.  

In class we discussed  a dynamic programming algorithm that finds a tree that minimizes C for any set of n keys and 2n+1 

associated frequencies.   It uses an alternate, recursive, formulation of C:   

 

(a) (10) The recursive formulation: Let T be a BST. If T is empty, then C(T) = 0.  Otherwise T has a root and two 

subtrees TLand TR.  Then C(T) = C(TL) + C(TR) + sum(ai, i=1..n) + sum(bi,i=0..n).  Show by induction that this recursive 

definition of C(T) is equivalent to the summation definition given above. [The recursive definition is used in the code 

provided online (linked from the schedule page]. 

(b) (5) The algorithm and a Python implementation are provided, along with a table of final values for the above inputs. 

Use the information from that table to draw the optimal tree. 

(c)  (10) What is the big-theta running time for the optimal-tree-generating algorithm?  Show your computations that lead 

you to this conclusion 



10. (d)  (10) (Part (d) is extra credit.  Not many people have gotten it in past terms)  (This is a challenging problem)  

Find a way to improve the given algorithm so that it has a smaller big-theta running time, and show that it really is 

smaller. 

 



HW 12 textbook problems and hints 

Problem 1.  8.4.3 [8.2.3] (5) (Warshall with no extra memory use) 
Explain how to implement Warshall’s algorithm without using extra memory 
for storing elements of the algorithm’s intermediate matrices. 

 

Author's hints:  

 
 

Problem 2.  8.4.4[8.2.4] (10) (More efficient Warshall inner loop) 

 

Author's hints:  

 

 

Problem 3.  OptimalBST problem   (25 points plus extra credit)  

                    Not from the textbook.   Description is in the assignment document 

Problem 4.  8.3.3 (10)  (Optimal BST from root table) 

 

Author's hint: 

 

 

  



Problem 5.   8.3.4 (5)  (Sum for optimalBST in constant time) 

 

Author's hint 

:  

Problem 6.   8.3.6 (10)  (optimalBST--successful search only--if all probabilities equal) 

 

Author's hint: 

 

 

Problem 7.   8.3.10a (5)  (Matrix chain multiplication) 

     

    

Author's hint: 

 

  



Problem 8.   8. 4.7 [8.2.7]  (10) (Floyd algorithm example)    

 
Author's hint: 

See an example of applying the algorithm to another instance of the problem in the section. 

 

 

 

Problem 9.   8. 4.8 [8.2.8]  (8) (Floyd algorithm matrix overwrite) 

Prove that the next matrix in sequence (8.14) of Floyd’s algorithm can be 
written over its predecessor. 

 

Instructor's notes: 

Here is the sequence that the problem refers to (I think it is 8.8 in the second edition): 

 
 

 

Author's hint: 

 



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 13 (70 points total) Updated for Summer, 2014 

When a problem is given by number, it is from the textbook.  1.1.2 means “problem 2 from section 1.1” .  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do. 

Not in 3rd ed   [9.1.1] (Greedy change-making not optimal)  Give an instance of the change-making problem  

                                    for which the greedy algorithm does not yield an optimal solution 

9.1.5  (greedy bridge crossing)  

Problems to write up and turn in: 

1.  (10)  9.1.3  (Greedy job scheduling) 

 

2. (  6)  9.1.9b [9.1.7b] (Prim example)  Start with node a.  Whenever you have a choice because edge weights  

                                           are equal, choose the vertex that  is closest to the beginning of the alphabet.  Then everyone  

|                                          should get the same answer,  making it easier for us to check your work. 

 

3. (  5)  9.1.10 [9.1.8] (Prim prior connectivity check?) 

 

4. (10)  9.1.15 [9.1.11] (change value of an item in a min-heap) 

  

5. (  6)  9.2.1b (Kruskal example)  Whenever you have a choice because edge weights are  

 equal, choose the edge whose vertices are closest to the beginning of the alphabet.  Then everyone  

 should get the same answer,  making it easier for us to check your work. 

 

6. (  8)  9.2.2 (Kruskal TF questions)  Briefly explain your answers. 

 

7. (  5)  9.2.8 (efficiency of find in union-by-size)  

 

8. (  8)  9.4.1 (Huffman codes)   (a) 4 points.  When there is a choice due to a tie, place the one that appears  

                        first in the problem statement’s character list “on the left” in the tree.  (b) 2 points.  (c) 2 points. 

 

9. (12)  9.4.3  (Huffman TF)  (a) 5 points  (b) 7 points  Explain your answers.   

 



MA/CSSE 473   HW 13 textbook problems and hints 

Problem #1  (10)  9.1.3 (Greedy job scheduling) 

 

Author's hint:  

 

Problem #2 (  6)  9.1.9b  [9.1.7]b (Prim example)   

 

 

Author's hint:  

 



 

Problem #3  (  5)  9.1.10 [9.1.8] (Prim prior connectivity check?) 

 

Author's hint: 

 

Problem #4   (10)  )  9.1.15 [9.1.11] (change value of an item in a min-heap)

 
Author's hint 

:  

Problem #5  (  6)  9.2.1b (Krushkal example) 

 
     

    

  



Author's hint: 

 

Problem #6  (  8)  9.2.2 (Kruskal TF questions)  Briefly explain your answers. 

 

Author's hint: 

 

Problem #7  (5)  9.2.8 (efficiency of find in union-by-size) 

   

Author's hint: 

 

Problem #8   (  8)  9.4.1  Huffman Code construction   

(a) 4 points.  When there is a choice due to a tie, place the one that appears first in the problem  

    statement’s character list “on the left” in the tree.  (b) 2 points.  (c) 2 points. 

   



Author's hint: 

 

 

Problem #9   ( 12)  9.4.3  Huffman TF    Explain your answers   

 

Author's hint: 

 

 

 

 



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 14 (79 points total)   Updated for Summer, 2014 

When a problem is given by number, it is from the textbook.  1.1.2 means “problem 2 from section 1.1” .  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do.  All problem numbers in this assignment (except #10) are the same in editions 3 and 4. 

9.4.6 (linear time Huffman code algorithm) 

10.2.2a (maximum flow example) 

10.2.5 (maximum flow algorithm for tree) 

10.2.6a (prove equation 10.9) 

10.4.3 (stable marriage example) 

10.4.6 (unique stable marriage solution) 

10.4.10  (roommate problem) 

  

Problems to write up and turn in: 

1. (  5)  9.4.4 (maximal Huffman codeword length) Once you have figured out the answer, describe a set of  

                         probabilities (or frequencies) that make that maximum  happen. 

 

2. (10) 9.4.10 (card guessing) 

 

3. (10) Answer the questions from class(below) about the induction proof of the correctness of  

 Kruskal's algorithm.  See details below. 

 

4. ( 6)  10.2.1 (sources and sinks with negative weights) 

 

5. ( 5) 10.2.3a (Maximum flow solution unique?)  Explain your answers. 

 

6. ( 5) 10.2.4a (Maximum flow single source and sink) 

 

7. ( 8) 10.4.1 (stable marriage example) 

 

8. ( 4) 10.4.2 (stable marriage check algorithm) 

 

9. ( 6) 10.4.5 (time efficiency of stable marriage algorithm) 

 

10. (20) 8.3.11bc    [8.3.10bc]   (Matrix Chain Multiplication) 

 
  

  



 

Details of problem #3 Kruskal's algorithm  
 

The questions (based on the information below) 

 

(a) How do we know that v was already part of some connected component of G'? 

 

Does the addition of e to C satisfy the hypothesis of the lemma?  For each statement below, explain why it is true. 

  

(b) G’ is a subgraph of some MST for G: 

 

(c) C is a connected component of G': 

 

(d) e connects a vertex in C to an vertex in G – C: 

 

(e) e satisfies the minimum-weight condition of the lemma: 

 

The algorithm: 

• To find a MST for a connected undirectedG: 

– Start with a graph G' containing all of the n vertices of G and no edges. 

– for i = 1 to n – 1: 

• Among all of G’s edges that can be added without creating a cycle, add one (call it e) that has 

minimal weight. 

 

The property we are trying to prove:  Before every loop execution, G' is a subgraph of some MST of G. 

 

Proof is (of course) by induction on i.   

BASE CASE:  When i = 1, G' consists of only vertices of G.  Since all vertices must be part of every MST for G, G is a 

subgraph of every MST. 

 

INDUCTION STEP.  Assume that G' is a subgraph of an MST for G.  Choose e according to the above algorithm.  Show 

that G' {e} is a subgraph of an MST of G. 

 

The Lemma we want to use: Let G be a weighted connected graph with a MST T; let G′ be any subgraph of T, and let C 

be any connected component of G′.  If we add to C an edge e=(v,w) that has minimum-weight among all of the edges that 

have one vertex in C and the other vertex not in C, then G has an MST that contains the union of G′ and e.  

 

In order to be able to use the lemma, we have to pick a connected component of C, and show that it satisfies the 

conditions of the lemma.  We let v be one of the vertices of e, and let C be the connected component of G' that contains v.   

 

Within this context, answer the 5 questions above. 

 



MA/CSSE 473   HW 14 textbook problems and hints 

Problem #1  (5)  9.4.4 (maximal Huffman codeword length) 

  

Once you have figured out the answer, describe a set of  

                         probabilities (or frequencies) that make that maximum  happen. 

Author's hint:  

  

Problem #2 ( 10)  9.4.10   (card guessing)   

 
Author's hint:  

  

Problem #3  ( 10)  Kruskal proof  

Problem on Kruskal's algorithm: 
 

The questions 

 

(a) How do we know that v was already part of some connected component of G'? 

 

Does the addition of e to C satisfy the hypothesis of the lemma?  For each statement below, explain why it is true. 

  

(b) G’ is a subgraph of some MST for G: 

 

(c) C is a connected component of G': 

 

(d) e connects a vertex in C to an vertex in G – C: 

 

(e) e satisfies the minimum-weight condition of the lemma: 

 

The algorithm: 



• To find a MST for a connected undirectedG: 

– Start with a graph G' containing all of the n vertices of G and no edges. 

– for i = 1 to n – 1: 

• Among all of G’s edges that can be added without creating a cycle, add one (call it e) that has 

minimal weight. 

The property we are trying to prove:  Before every loop execution, G' is a subgraph of some MST of G. 

 

Proof is (of course) by induction on i.   

BASE CASE:  When I = 1, G' consists of only vertices of G.  Since all vertices must be part of any MST for G, G is a 

subgraph of every MST. 

 

INDUCTION STEP.  Assume that G' is a subgraph of an MST for G.  Choose e according to the above algorithm.  Show that 

G' ∪{e} is a sungraph of an MST of G. 

 

The Lemma we want to use: Let G be a weighted connected graph with a MST T; let G′ be any subgraph of T, and let C 

be any connected component of G′.  If we add to C an edge e=(v,w) that has minimum-weight among all of the edges that 

have one vertex in C and the other vertex not in C, then G has an MST that contains the union of G′ and e.  

 

In order to be able to use the lemma, we have to pick a connected component of C, and show that it satisfies the 

conditions of the lemma.  We let v be one of the vertices of e, and let C be the connected component of G' that contains 

v.   

 

Within this context, answer the 5 questions above. 

 

Problem #4   ( 6)  10.2.1 (sources and sinks with negative weights) 

  
Author's hint 

:   

Problem #5  (  6)  10.2.3a (Maximum flow solution unique?) Explain your answers. 

.  

    

Author's hint: 

 

  



Problem #6  (  5)  10.2.4a (Maximum flow single source and sink)   

  

Author's hint: 

  

Problem #7  ( 8)  10.4.1 (stable marriage example) 

    
Author's hint: 

  

Problem #8   (  4)  10.4.2  (stable marriage check algorithm) 

  

Author's hint: 

  

Problem #9   ( 6)  10.4.5  (Huffman TF)     

 

Author's hint: 

  



Problem #10   ( 20)  8.3.11bc [8.3.10bc]  matrix chain mltiplication     

 

 

Author's hint: 

 



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 15 (59 points total, plus 10 points optional extra-credit)   
updated for summer 2014 

When a problem is given by number, it is from the textbook.  1.1.2 means “problem 2 from section 1.1” .  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do. 

11.1.2 (lower bound towers of Hanoi) 

11.1.3 (trivial lower bounds) 

11.1.6 (lower bound on sorting y exchanging adjacent elements) 

11.1.11 (tight lower bound for closest numbers problem) 

11.2.2 (median of 3 lower bound) 

11.2.4 (best comparison-based sort for 4 elements) 

11.2.9  (tournament tree) 

11.2.11 [11.2.10] (jigsaw puzzle) 

11.3.5 (polynomial-time 2-coloring algorithm) 

  

Problems to write up and turn in: 

1. (  5)  11.1.1 (lower bound for alternating disk algorithm)  

 

2. ( 5) 11.1.4 (fake coin minimum number of guesses) 

 

3. (12) 11.1.10 (matrix multiplication and squaring) (6, 6) 

 

4. ( 9)  11.2.10ab [11.2.8ab] (advanced fake-coin problem)  (4, 5) 

 

5. ( 5) 11.3.1 (Chess decidable?)  Explain your answer. 

 

6. ( 8) 11.3.2 (tractable?) Explain your answer. 

 

7. ( 5) 11.3.6 (brute force composite number) 

 

8. ( 5) 11.3.7a (polynomial –time check of knapsack solution) 

 

9. ( 5) 11.3.11 [11.3.10] (Venn diagrams) 

 

10. (10) 11.3.12 [11.3.11]   (King Arthur problem)  Optional, extra-credit problem 

 
  



MA/CSSE 473   HW 15 textbook problems and hints  

Problem #1  (5)  11.1.1 (lower bound for alternating disk algorithm) 

 . 

Author's hint:  

  

Problem #2 ( 5) 11.1.4 (fake coin minimum number of guesses) 

 
Author's hint:  

  

Problem #3   (12) 11.1.10    (matrix multiplication and squaring) (6, 6) 

 
Author's hint: 

 
  



Problem #4  ( 9)  11.2.10ab [11.2.8ab] (advanced fake-coin problem)  (4, 5) 

  

 
Author's hint 

:   

Problem #5  ( 5) 11.3.1 (Chess decidable?)  Explain your answer. 

.  

Author's hint: 

 

Problem #6  ( 8) 11.3.2 (tractable?) Explain your answer.  

  
Author's hint: 

  

  



Problem #7  ( 5) 11.3.6 (brute force composite number) 

   

  
Author's hint: 

  

Problem #8   ( 5) 11.3.7a (polynomial –time check of knapsack solution) 

  
Author's hint: 

  

Problem #9   (5) 11.3.11 [11.3.10] (Venn diagrams) 

 

 

Author's hint: 



  

 

Problem #10   (10) 11.3.12 [11.3.11]   (King Arthur problem)  Optional, extra-credit problem 

 

Author's hint: 

  

 



MA/CSSE 473 – Design and Analysis of Algorithms 

Homework 16 (25 points total)  
updated for summer 2014 

When a problem is given by number, it is from the textbook.  1.1.2 means “problem 2 from section 1.1” .  

Problems for enlightenment/practice/review (not to turn in, but you should think about them):  

How many of them you need to do serious work on depends on you and your background.  I do not want to 

make everyone do one of them for the sake of the (possibly) few who need it.  You can hopefully figure out 

which ones you need to do. 

12.1.3             (n-queens implementation) 

12.1.11 [12.1.10] (puzzle pegs) 

  

Problems to write up and turn in: 

1. (  5)  12.1.5 [12.1.4]  (Hamiltonian Circuit) Show the state space. 

 

2. ( 5)  12.2.1     (data structure for best-first branch-and-bound) 

 

3. ( 5)  12.2.5 (use branch-and-bound to solve instance of knapsack problem) 

 

4. (10) 12.3.1 (nearest-neighbor algorithm example)  (4, 6) 

 
  



MA/CSSE 473   HW 16 textbook problems and hints   

Problem #1  (  5)  12.1.5 [12.1.4] (Hamiltonian circuit backtracking) Show the state space. 

 . 

Author's hint:  

  

Problem #2 ( 5)  12.2.1    (data structure for best-first branch-and-bound) 

 
Author's hint:  

  

Problem #3  ( 5)  12.2.5 (use branch-and-bound to solve instance of knapsack problem) 

 
Author's hint: 

 
  



Problem #4   (10) 12.3.1 (nearest-neighbor algorithm example)  (4, 6))   

 
Author's hint 

:   



MA/CSSE 473 – Design and Analysis of Algorithms 

Virtual Homework 17  

This is not an actual assignment to be turned in.  I present this list of  problems to give an idea of the level of 

understanding of Chapter 11 material that you should have for the Final Exam. 

1. 11.1.2 

2. 11.1.3 

3. 11.1.4 

4. 11.1.7 

5. 11.1.10 

6. 11.1.11 

7. 11.2.2 

8. 11.2.4 

9. 11.3.1 

10. 11.3.2 

11. 11.3.5 

12. 11.3.9 
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