[bookmark: _GoBack]473 Levitin problems and hints HW 08

Problem 1: (8) 5.2.9 [4.2.9]
[image:]
Author's Hints:
[image:]

Problem 2: (8) 5.2.11 [4.2.11]
[image:]
Author's Hints:
 Use the partition idea.
Problems 3: (15) 5.3.8 [4.4.7]
[image:]
Author's Hints:
[image:]
Problem 4: (5) 5.3.11 [4.4.10]
[image:]
Author's Hints:
[image:]

Problem 5: (5) 5.4.9 [4.5.9]
[image:]
Author's Hints:
[image:]

Problem 6: (10) 5.5.3 [4.6.2]
 [image:]
Author's Hints:
[image:]
Problem 7: (5) 5.5.7 [4.6.6]
[image:]
Author's Hints:
[image:]
image5.png
8. Find the root’s label of the binary tree first, and then identify the labels
of the nodes in its left and right subtrees.

image6.png
11

Chocolate bar puzle Given an n-by-m chocolate bar, you need to break
it into #m 1-by-1 pieces. You can break a bar only in a straight line, and
only one bar can be broken at a time. Design an algorithm that solves the
‘problem with the minimum number of bar breaks. What is this minimum
number? Justify your answer by using properties of a binary tree.

image7.png
11. Breaking the chocolate bar can be represented by a binary tree.

image8.png
9. V. Pan [Pan78] has discovered a divide-and-conquer matrix multiplication
algorithm that is based on multiplying two 70-by-70 matrices using 143,640
multiplications. Find the asymptotic efficiency of Pan’s algorithm (you
can ignore additions) and compare it with that of Strassen’s algorithm.

image9.png
9. The recurrence for the number of multiplications in Pan’s algorithm is
similar to that for Strassen’s algorithm. Use the Master Theorem to find
the order of growth of its solution.

image10.png
3. Consider the version of the divide-and-conquer two-dimensional closest-
‘pair algorithm in which, instead of presorting input set P, we simply sort
each of the two sets P; and P, in nondecreasing order of their y coordinates
on each recursive call. Assuming that sorting is done by mergesort, set
up a recurrence relation for the running time in the worst case and solve
it for n = 2%

image11.png
3. Recall (see Section 5.1) that the number of comparisons made by mergesort
in the worst case is Cuorst(n) =nlogan —n+1 (for n = 2%). You may

use just the highest-order term of this formula in the recurrence you need
to set up.

image12.png
7. Explain how one can find point pmax in the quickhull algorithm analyti-
cally.

image13.png
2. We traced the algorithms on smaller instances in the section.

image1.png
9. » The Dutch national flag problem is to rearrange an array of charac-
ters R, W, and B (red, white, and blue are the colors of the Dutch national

flag) so that all the R’s come first, the 1¥”’s come next, and the B’s come
last. Design a linear in-place algorithm for this problem

image2.png
9. a. You may want to solve first the two-color flag problem, i.e., rearrange
efficiently an array of R’s and B's. (A similar problem is Problem § in
this section’s exercises.)

b. Extend the definition of a partition.

image3.png
11. » Nuts and bolts You are given a collection of n bolts of different widths
and n corresponding nuts. You are allowed to try a nut and bolt together,
from which you can determine whether the nut is larger than the bolt,
smaller than the bolt, or matches the bolt exactly. However, there is no
way to compare two nuts together or two bolts together. The problem is
o match each bolt to its nut. Design an algorithm for this problem with
average-case efficiency in ©(nlogn). [Raw91]

image4.png
8. a. Draw a binary tree with 10 nodes labeled 0, 1, _., 9 in such a way that
the inorder and postorder traversals of the tree yield the following lists: 9,
3,1,0,4,2,7,6,8, 5 (inorder) and 9, 1, 4,0, 3,6, 7, 5, 8, 2 (postorder).

b. Give an example of two permutations of the same n labels 0,1, ..n—1
that cannot be inorder and postorder traversal lists of the same binary
tree.

c. Design an algorithm that constructs a binary tree for which two given
lists of 7 labels 0,1, n — 1 are generated by the inorder and postorder
traversals of the tree. Your algorithm should also identify inputs for which
the problem has no solution.

