

#### **Data Structures for Kruskal**

- A sorted list of edges (edge list, not adjacency list)
  - Edge e has fields e.v and e.w (#s of its end vertices)
- Disjoint subsets of vertices, representing the connected components at each stage.
  - Start with n subsets, each containing one vertex.
  - End with one subset containing all vertices.
- Disjoint Set ADT has 3 operations:
  - makeset(i): creates a singleton set containing vertex i.
  - findset(i): returns the "canonical" member of its subset.
    - I.e., if i and j are elements of the same subset, findset(i) == findset(j)
  - union(i, j): merges the subsets containing i and j into a single subset.



# Example of operations

- makeset (1)
- makeset (2)
- makeset (3)
- makeset (4)
- makeset (5)
- makeset (6)

- union(4, 6)
- union (1,3)
- union(4, 5)
- findset(2)
- findset(5)

What are the sets after these operations?



# Kruskal Algorithm

# Assume vertices are numbered 1...n (n = |V|)

Sort edge list by weight (increasing order)
for i = 1..n:

```
makeset(i)
i, count, result = 1, 0, []
```

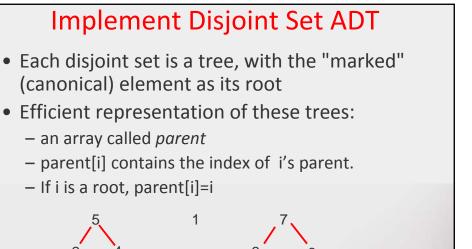
I, cours, resure I, o,

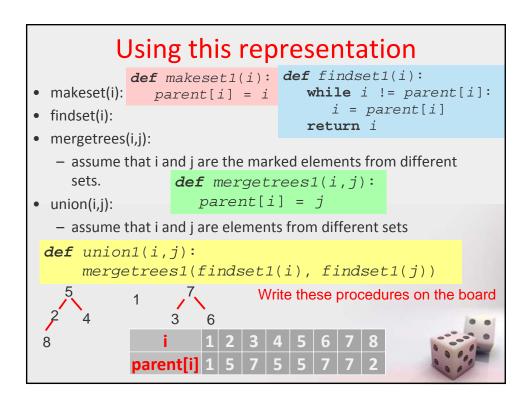
```
while count < n-1:
   if findset(edgelist[i].v) !=
     findset(edgelist[i].w):
     result += [edgelist[i]]</pre>
```

count += 1
union(edgelist[i].v, edgelist[i].w)

i += 1
return result

What can we say about efficiency of this algorithm (in terms of n=|V| and m=|E|)?





# **Analysis**

- Assume that we are going to do n makeset operations followed by m union/find operations
- time for makeset?
- worst case time for findset?
- worst case time for union?
- Worst case for all m union/find operations?
- worst case for total?
- What if m < n?
- Write the formula to use min



#### Can we keep the trees from growing so fast?

- Make the shorter tree the child of the taller one
- What do we need to add to the representation?
- rewrite makeset, mergetrees.

 What can we say about the maximum height of a k-node tree?

# Theorem: max height of a k-node tree T produced by these algorithms is lg k

- Base case...
- Induction step:
  - Let T be a k-node tree (k > 1)
  - Induction hypothesis...
  - T is the union of two trees:
    - T<sub>1</sub> with k<sub>1</sub> nodes and height h<sub>1</sub> T<sub>2</sub> with k<sub>2</sub> nodes and height h<sub>2</sub>
  - What can we say about the heights of these two trees?
  - Case 1: h<sub>1</sub>≠h<sub>2</sub>. Height of T is
  - Case 2:  $h_1=h_2$ . WLOG Assume  $k_1 \ge k_2$ . Then  $k_2 \le k/2$ . Height of tree is

$$1 + h2 \le 1 + \lfloor \lg k_2 \rfloor \le 1 + \lfloor \lg k/2 \rfloor$$
$$= 1 + \lfloor \lg k - 1 \rfloor = \lfloor \lg k \rfloor$$



#### Worst-case running time

- Again, assume n makeset operations, followed by m union/find operations.
- If m > n
- If m < n



# Speed it up a little more

- Path compression: Whenever we do a findset operation, change the parent pointer of each node that we pass through on the way to the root so that it now points directly to the root.
- Replace the height array by a rank array, since it now is only an upper bound for the height.
- Look at makeset, findset, mergetrees (on next slides)



#### Makeset

This algorithm represents the set  $\{i\}$  as a one-node tree and initializes its rank to 0.

```
def makeset3(i):
    parent[i] = i
    rank[i] = 0
```



#### **Findset**

• This algorithm returns the root of the tree to which i belongs and makes every node on the path from i to the root (except the root itself) a child of the root.

```
def findset(i):
    root = i
    while root != parent[root]:
        root = parent[root]
        j = parent[i]
    while j != root:
        parent[i] = root
        i = j
        j = parent[i]
    return root
```

# Mergetrees

This algorithm receives as input the roots of two distinct trees and combines them by making the root of the tree of smaller rank a child of the other root. If the trees have the same rank, we arbitrarily make the root of the first tree a child of the other root.

```
def mergetrees(i,j) :
    if rank[i] < rank[j]:
        parent[i] = j
    elif rank[i] > rank[j]:
        parent[j] = i
    else:
        parent[i] = j
        rank[j] + 1
```

# **Analysis**

- It's complicated!
- R.E. Tarjan proved (1975)\*:
  - Let t = m + n
  - Worst case running time is  $\Theta(t \alpha(t, n))$ , where  $\alpha$  is a function with an *extremely* slow growth rate.
  - Tarjan's α:
  - α(t, n) ≤ 4 for all n ≤  $10^{19728}$
- Thus the amortized time for each operation is essentially constant time.
- \* According to *Algorithms* by R. Johnsonbaugh and M. Schaefer, 2004, Prentice-Hall, pages 160-161

Polynomial-time algorithms
INTRO TO COMPUTATIONAL
COMPLEXITY

### The Law of the Algorithm Jungle

- Polynomial good, exponential bad!
- The latter is obvious, the former may need some explanation
- We say that polynomial-time problems are tractable, exponential problems are intractable

#### tractable

- (obsolete) Capable of being handled or touched; palpable; practicable; feasible; as, tractable measures.
  - "I have always found horses, an animal I am attached to, very tractable when treated with humanity and steadiness." Mary Wollstonecraft, "A Vindication of the Rights of Woman"
- Capable of being easily led, taught, or managed; docile; manageable; governable; as, tractable children; a tractable learner.

### Polynomial time vs exponential time

- What's so good about polynomial time?
  - It's not exponential!
    - We can't say that every polynomial time algorithm has an acceptable running time,
    - but it is certain that if it *doesn't* run in polynomial time, it only works for small inputs.
  - Polynomial time is closed under standard operations.
    - If f(t) and g(t) are polynomials, so is f(g(t)).
    - also closed under sum, difference, product
- Almost all of the algorithms we have studied run in polynomial time.
  - Except those (like permutation and subset generation) whose output is exponential.

# **Decision problems**

- When we define the class P, of "polynomial-time problems", we will restrict ourselves to *decision* problems.
- Almost any problem can be rephrased as a decision problem.
- Basically, a decision problem is a question that has two possible answers, yes and no.
- The question is about some input.
- A *problem instance* is a combination of the problem and a specific input.



# Decision problem definition

- The statement of a decision problem has two parts:
  - The *instance description* part defines the information expected in the input
  - The question part states the actual yes-or-no question; the question refers to variables that are defined in the instance description



# Decision problem examples

- Definition: In a graph G=(V,E), a clique E is a subset of V such that for all u and v in E, the edge (u,v) is in E.
- Clique Decision problem
  - Instance: an undirected graph G=(V,E) and an integer k.
  - Question: Does G contain a clique of k vertices?
- k-Clique Decision problem
  - Instance: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
  - Question: Does G contain a clique of k vertices?



# Decision problem example

- Definition: The chromatic number of a graph G=(V,E)
  is the smallest number of colors needed to color G. so
  that no two adjacent vertices have the same color
- Graph Coloring Optimization Problem
  - Instance: an undirected graph G=(V,E).
  - Problem: Find G's chromatic number and a coloring that realizes it
- Graph Coloring Decision Problem
  - Instance: an undirected graph G=(V,E) and an integer k>0.
  - Question: Is there a coloring of G that uses no more than k colors?
- Almost every optimization problem can be expressed in decision problem form

# Decision problem example

- **Definition:** Suppose we have an unlimited number of bins, each with capacity 1.0, and n objects with sizes  $s_1, ..., s_n$ , where  $0 < s_i \le 1$  (all  $s_i$  rational)
- Bin Packing Optimization Problem
  - Instance: s<sub>1</sub>, ..., s<sub>n</sub> as described above.
  - Problem: Find the smallest number of bins into which the n objects can be packed
- Bin Packing Decision Problem
  - Instance: s<sub>1</sub>, ..., s<sub>n</sub> as described above, and an integer k.
  - Question: Can the n objects be packed into k bins?



#### Reduction

- Suppose we want to solve problem **p**, and there is another problem **q**.
- Suppose that we also have a function T that
  - takes an input x for **p**, and
  - produces T(x), an input for q such that the correct answer for p with input x is yes if and only if the correct answer for q with input T(X) is yes.
- We then say that p is reducible to q and we write p≤q.
- If there is an algorithm for **q**, then we can compose T with that algorithm to get an algorithm for **p**.
- If T is a function with polynomially bounded running time, we say that p is polynomially reducible to q and we write p≤pq.
- From now on, reducible means polynomially reducible.

#### Classic 473 reduction

• Moldy Chocolate is reducible to 4-pile Nim



#### Definition of the class P

- **Definition:** An algorithm is *polynomially bounded* if its worst-case complexity is big-O of a polynomial function of the input size n.
  - i.e. if there is a single polynomial p such that for each input of size n, the algorithm terminates after at most p(n) steps.
- Definition: A problem is polynomially bounded if there is a polynomially bounded algorithm that solves it
- The class P
  - P is the class of decision problems that are polynomially bounded
  - Informally (with slight abuse of notation), we also say that polynomially bounded optimization problems are in P

# Example of a problem in P

- Shortest Path
  - Input: A weighted graph G=(V,E) with n vertices
     (each edge e is labeled with a non-negative weight w(e)), two vertices v and w and a number k.
  - Question: Is there a path in G from v to w whose total weight is ≤ k?
- How do we know it's in P?



# **Example: Clique problems**

- It is known that we can determine whether a graph with n vertices has a k-clique in time O(k<sup>2</sup>n<sup>k</sup>).
- Clique Decision problem 1
  - Instance: an undirected graph G=(V,E) and an integer k.
  - Question: Does G contain a clique of k vertices?
- Clique Decision problem 2
  - Instance: an undirected graph G=(V,E). Note that k is some constant, independent of the problem.
  - Question: Does G contain a clique of k vertices?
- Are either of these decision problems in *P*?



# The problem class NP

- *NP* stands for Nondeterministic Polynomial time.
- The first stage assumes a "guess" of a possible solution.
- Can we verify whether the proposed solution really is a solution in polynomial time?



#### More details

- Example: Graph coloring. Given a graph G with N vertices, can it be colored with k colors?
- A solution is an actual k-coloring.
- A "proposed solution" is simply something that is in the right form for a solution.
  - For example, a coloring that may or may not have only k colors, and may or may not have distinct colors for adjacent nodes.
- The problem is in NP iff there is a polynomialtime (in N) algorithm that can check a proposed solution to see if it really is a solution.

## Still more details

- A nondeterministic algorithm has two phases and an output step.
- The nondeterministic "guessing" phase, in which the proposed solution is produced. It will be a solution if there is one.
- The deterministic verifying phase, in which the proposed solution is checked to see if it is indeed a solution.
- Output "yes" or "no".

