6,8:15

MA/CSSE 473
Day 37 ® o

“>
. -~ -~
Student Questions > .- .

Kruskal data
structures

Disjoint Set ADT

Complexity intro

Data Structures for Kruskal

e A sorted list of edges (edge list, not adjacency list)
— Edge e has fields e.v and e.w (#s of its end vertices)

e Disjoint subsets of vertices, representing the
connected components at each stage.
— Start with n subsets, each containing one vertex.
— End with one subset containing all vertices.

e Disjoint Set ADT has 3 operations:
— makeset(i): creates a singleton set containing vertex i.

— findset(i): returns the "canonical" member of its subset.
e |l.e., ifiandjare elements of the same subset,

findset(i) == findset(j)
— union(i, j): merges the subsets containing i and j

into a single subset. v

Example of operations

e makeset (1)

e makeset (2) * union(4, 6)
e makeset (3) * union (1,3)
e makeset (4) * union(4, 5)
e makeset (5) e findset(2)
e makeset (6) ¢ findset(5)

What are the sets after these operations?

Kruskal Algorithm

Assume vertices are numbered 1...n What can we say
(n=1V]) about efficiency of

Sort edge list by weight (increasing order this algorithm (in
for ig: 1 yn_ ght | =) terms of n=|V| and

makeset(i) m=|E[)?
i, count, result = 1, 0, []

while count < n-1:
1T findset(edgelist[i].v) !=
findset(edgelist|i].w):
result += [edgelist[i]]
count += 1
union(edgelist[i].v, edgelist[i].-w)

1 += 1
® 8
return result "N o

Implement Disjoint Set ADT

e Each disjoint set is a tree, with the "marked"
(canonical) element as its root
e Efficient representation of these trees:
— an array called parent
— parent[i] contains the index of i’s parent.
— If i is a root, parent[i]=i

1 7

5
/ \ / \
2 4 3 6
/
8
. [1/2]3]4]5]|6[7]8]
parent(i] |1/ 0 A

Using this representation
def makesetl(i): def Ffindsetl(i):

e makeset(i): parent[i] = i while 1 != parent[i]:
e findset(i): I = parent[i]
return i

e mergetrees(i,j):

— assume that i and j are the marked elements from different
sets. def mergetreesl(i,j):

e union(i,j): parent[i] = j

— assume that i and j are elements from different sets
def unionl(i,j):

mergetreesl(findsetl(i), findsetl(j))

/5\ 1 /7\ Write these procedures on the board
4 3 6 e o

L]1/2]3|4(5|6(7 |8 JEe"
STl 5[7]5]5(7]7]2]

RN

Analysis

Assume that we are going to do n makeset
operations followed by m union/find
operations

time for makeset?

worst case time for findset?

worst case time for union?

Worst case for all m union/find operations?

worst case for total?
e Whatif m<n? - -

e Write the formula to use min v

Can we keep the trees from growing so fast?
e Make the shorter tree the child of the taller one
e What do we need to add to the representation?
e rewrite makeset, mergetrees.

S MELCEEET T)_: def mergetrees2(i,j):

parent[i] = 1 if height[i] < height[j1):
height[i] = 0 parentri] = 3
elif height[i] > height[j]:
parent[j] = i
_ _ else:
e findset & union parent[i] = j
are unchanged. height[j] = height[j] + 1

e What can we say about the maximum height « «

of a k-node tree? v

Theorem: max height of a k-node tree T
produced by these algorithms is |_Ig k]

e Base case...

e Induction step:
— Let T be a k-node tree (k> 1)
— Induction hypothesis...

— Tis the union of two trees:

T, with k; nodes and height h,;

T, with k, nodes and height h,
— What can we say about the heights of these two trees?
— Case 1: hyzh,. Height of T is
— Case 2: h;=h,. WLOG Assume k,2k,. Then k,<k/2.

Height of tree is

1+h2<=1+lIgk,l<=1+[Igk/2] >

=1+llgk-1]=lIgk] i -'_'..F-- ™

Worst-case running time

e Again, assume n makeset operations, followed
by m union/find operations.

e Ifm>n

e Ifm<n

Speed it up a little more

e Path compression: Whenever we do a findset
operation, change the parent pointer of each
node that we pass through on the way to the
root so that it now points directly to the root.

e Replace the height array by a rank array, since
it now is only an upper bound for the height.

e Look at makeset, findset, mergetrees (on next
slides)

Makeset

This algorithm represents the set {i} as a one-node
tree and initializes its rank to O.

def makeset3(1):
parent[i] = 1
rank[1] = O

Findset
e This algorithm returns the root of the tree to
which i belongs and makes every node on the

path from i to the root (except the root itself)
a child of the root.

def findset(i):

root = 1

while root != parent|[root]:
root = parent[root]

J = parent[i]

while j = root:
parent[1] = root
i =] =
J = parent[i] -~ e

return root v

Mergetrees

This algorithm receives as input the roots of two
distinct trees and combines them by making the
root of the tree of smaller rank a child of the other
root. If the trees have the same rank, we arbitrarily
make the root of the first tree a child of the other
root.
def mergetrees(i,j) :
if rank[i] < rank[j]:
parent[i] = j
elif rank[i] > rank[j]:
parent[j] = 1
else:
parent[i] = j -

rank[j] = rank[j] + 1 v

Analysis

e |t's complicated!
e R.E. Tarjan proved (1975)*:

— Lett=m+n

— Worst case running time is ©(t a(t, n)), where
a is a function with an extremely slow growth rate.

— Tarjan's a:
— a(t, n) <4 forall n < 1019728

e Thus the amortized time for each operation is
essentially constant time.

Accordmg to Algorithms by R. Johnsonbaugh and M. Schaeﬁ-}r,,_..
2004, Prentice-Hall, pages 160-161

Polynomial-time algorithms

INTRO TO COMPUTATIONAL
COMPLEXITY

€

The Law of the Algorithm Jungle
e Polynomial good, exponential bad!

e The latter is obvious, the former may
need some explanation

e We say that polynomial-time problems
are tractable, exponential problems are
intractable

tractable

1. (obsalete) Capable of being handled or touched; palpable; practicable; feasible; as,
tractable measures.

"I have always found horses, an animal | am alfached fo, very tractable when

treated with humanity and steadiness.” - Mary Wollstonecraft, "A Vindication of
the Rights of Woman”

[]
®
1. Capable of being easily led, taught, or managed; docile; manageable; governable; as, '

tractable children: a tractable leamer.
e

Polynomial time vs exponential time

e What’s so good about polynomial time?

— It’s not exponential!

e We can’t say that every polynomial time algorithm has an
acceptable running time,

e but it is certain that if it doesn’t run in polynomial time, it
only works for small inputs.

— Polynomial time is closed under standard
operations.
e If f(t) and g(t) are polynomials, so is f(g(t)).
¢ also closed under sum, difference, product
e Almost all of the algorithms we have studied
run in polynomial time. E

— Except those (like permutation and subset v

generation) whose output is exponential.

Decision problems

e When we define the class P, of “polynomial-time
problems”, we will restrict ourselves to decision
problems.

e Almost any problem can be rephrased as a decision
problem.

e Basically, a decision problem is a question that has
two possible answers, yes and no.

e The question is about some input.

e A problem instance is a combination of the problem
and a specific input.

Decision problem definition

e The statement of a decision problem has two
parts:
— The instance description part defines the
information expected in the input

— The question part states the actual yes-or-no
guestion; the question refers to variables that are
defined in the instance description

10

Decision problem examples

e Definition: In a graph G=(V,E), a clique E is a subset of
V such that for all uand vin E, the edge (u,v) is in E.

e Clique Decision problem
— Instance: an undirected graph G=(V,E) and an integer k.
— Question: Does G contain a clique of k vertices?

e k-Clique Decision problem

— Instance: an undirected graph G=(V,E). Note that k is some
constant, independent of the problem.

— Question: Does G contain a clique of k vertices?

Decision problem example

e Definition: The chromatic number of a graph G=(V,E)
is the smallest number of colors needed to color G. so
that no two adjacent vertices have the same color

¢ Graph Coloring Optimization Problem

— Instance: an undirected graph G=(V,E).
— Problem: Find G’s chromatic number and a coloring that
realizes it
e Graph Coloring Decision Problem
— Instance: an undirected graph G=(V,E) and an integer k>0.
— Question: Is there a coloring of G that uses no more than k
colors?

e Almost every optimization problem can be__. 2

expressed in decision problem form v

11

Decision problem example

e Definition: Suppose we have an unlimited number of
bins, each with capacity 1.0, and n objects with sizes
Sy, » Sy Where 0 <'s, <1 (all s, rational)

e Bin Packing Optimization Problem
— Instance:s,, ..., s, as described above.

— Problem: Find the smallest number of bins into which the n
objects can be packed

e Bin Packing Decision Problem
— Instance:s,, ..., s, as described above, and an integer k.

— Question: Can the n objects be packed into k bins?

Reduction

Suppose we want to solve problem p, and there is another
problem q.

Suppose that we also have a function T that

— takes an input x for p, and

— produces T(x), an input for g such that the correct answer for p
with input x is yes if and only if the correct answer for q with
input T(X) is yes.

We then say that p is reducible to q and we write p<q.
If there is an algorithm for q, then we can compose T with
that algorithm to get an algorithm for p.

If T is a function with polynomially bounded running time,
we say that p is polynomially reducible to q and we write
P<yq.

From now on, reducible means polynomially reducible.

12

Classic 473 reduction

e Moldy Chocolate is reducible to 4-pile Nim

Definition of the class P

e Definition: An algorithm is polynomially bounded if its
worst-case complexity is big-O of a polynomial function
of the input size n.

— i.e. if there is a single polynomial p such that for each input of
size n, the algorithm terminates after at most p(n) steps.

e Definition: A problem is polynomially bounded if there is
a polynomially bounded algorithm that solves it

e The class P

— Pis the class of decision problems that are polynomially
bounded

— Informally (with slight abuse of notation), we
also say that polynomially bounded optimization problems are
in P >

13

Example of a problem in P

e Shortest Path

— Input: A weighted graph G=(V,E) with n vertices
(each edge e is labeled with a non-negative weight
w(e)), two vertices vand w and a number k.

— Question: Is there a path in G from v to w whose
total weight is < k?

e How do we know it’s in P?

Example: Clique problems

It is known that we can determine whether a graph
with n vertices has a k-clique in time O(k2nk).
Clique Decision problem 1

— Instance: an undirected graph G=(V,E) and an integer k.
— Question: Does G contain a clique of k vertices?

Clique Decision problem 2

— Instance: an undirected graph G=(V,E). Note that k is some
constant, independent of the problem.

— Question: Does G contain a clique of k vertices?
Are either of these decision problems in P?

14

The problem class NP

e NP stands for Nondeterministic Polynomial
time.

e The first stage assumes a “guess” of a possible
solution.

e Can we verify whether the proposed solution
really is a solution in polynomial time?

More details

e Example: Graph coloring. Given a graph G with
N vertices, can it be colored with k colors?

e A solution is an actual k-coloring.

e A “proposed solution” is simply something that
is in the right form for a solution.

— For example, a coloring that may or may not have
only k colors, and may or may not have distinct
colors for adjacent nodes.

e The problem is in NP iff there is a polynomial-
time (in N) algorithm that can check a s—
proposed solution to see ifitreallyisa =< o

solution. v

15

Still more details

e A nondeterministic algorithm has two phases
and an output step.

e The nondeterministic “guessing” phase, in
which the proposed solution is produced. It
will be a solution if there is one.

e The deterministic verifying phase, in which the
proposed solution is checked to see if it is
indeed a solution.

e QOutput “yes” or “no”. -

16

