MA/CSSE 473
Day 36

Student Questions
>
i -~ ~
More on Minimal > P -~
Spanning Trees -

Kruskal

Prim

Kruskal and Prim

ALGORITHMS FOR FINDING A
MINIMAL SPANNING TREE

Kruskal’s algorithm

e To find a MST (minimal Spanning Tree):

e Start with a graph T containing all n of G’s
vertices and none of its edges.
e fori=1ton—1:

— Among all of G’s edges that can be added without
creating a cycle, add to T an edge that has minimal
weight.

— Details of Data Structures later

Prim’s algorithm

e Start with T as a single vertex of G (which is a
MST for a single-node graph).
e fori=1ton—1:

— Among all edges of G that connect a vertex in T to
a vertex that is not yet in T, add a minimum-weight
edge (and the vertex at the other end of T).

— Details of Data Structures later

MST lemma

Let G be a weighted connected graph,

let T be any MST of G,

let G’ be any nonempty subgraph of T, and
let C be any connected component of G'.

Then:

— If we add to C an edge e=(v,w) that has minimum-weight
among all edges that have one vertex in C and the other
vertex not in C,

— G has an MST that contains the union of G’ and e.

[WLOG, v is the vertex of e that is in C, and w is not in C]
Summary: If G'is a subgraph of an MST, so is G'\U{e}

MST lemma

Let G be a weighted connected graph with a MST T; let G’ be any
subgraph of T, and let C be any connected component of G'.

If we add to C an edge e=(v,w) that has minimum-weight among all
edges that have one vertex in C and the other vertex not in C,

then G has an MST that contains the union of G' and e.

[WLOG v is the vertex of e that is in C, and w is not in C]

Proof:
vIf eisin T, we are done, so we assume that e is notin T.
¥'Since T does not contain edge e, adding e to T creates a cycle.

v'Removing any edge of that cycle from Tu{e} gives us another
spanning tree.

vIf we want that tree to be a minimal spanning tree for G that
contains G’ and e, we must choose the “removable” edge e
carefully. - =9

v'Details on next page... v

Choosing the edge to remove

v' Along the unique simple path in T from vto w, let w’
be the first vertex that is not in C, and let v’ be the
vertex immediately before it.

v Then €’ = (V/, w') is also an edge from C to G-C.

v Note that by the minimal-weight choice of e,
weight(e’) > weight(e) .

v’ Let T' be the (spanning) tree obtained from T by
removing e’ and adding e.

v Note that the removed edge is not in G/,

v’ Because e and e’ are the only edges that are different,
weight(T) > weight(T’).

v’ Because T is a MST, weight(T) < weight(T’).
v’ Thus the weights are equal, and T’ is an MST ==

containing G’ and e, which is what we wanted. v

Recap: MST lemma

Let G be a weighted connected graph with an MST T;
let G’ be any subgraph of T, and let C be any connected component of G'.

If we add to C an edge e=(v,w) that has minimum-weight among all
edges that have one vertex in C and the other vertex not in C,

then G has an MST that contains the union of G’ and e.

Recall Kruskal’s algorithm
e To find a MST for G:
— Start with a connected weighted graph containing all of
G’s n vertices and none of its edges.
—fori=1ton-1:

e Among all of G’s edges that can be added without creating a
cycle, add one that has minimal weight.

Does this algorithm actually .y -

produce an MST for G? v

Does Kruskal produce a MST?

e Claim: After every step of Kruskal’s algorithm, we
have a set of edges that is part of an MST of G

¢ Proof of claim: Base case ...

e Induction step:

— Induction Assumption: before adding an edge we have a
subgraph of an MST

— We must show that after adding the next edge we have a
subgraph of an MST

— Details:

Does Prim produce an MST?

e Proof similar to Kruskal (but slightly simpler)
e |t's done in the textbook

Recap: Prim’s Algorithm for
Minimal Spanning Tree

e Start with T as a single vertex of G (which is a
MST for a single-node graph).
e fori=1ton—-1:

— Among all edges of G that connect a vertexin T to
a vertex that is not yet in T, add to T @ minimum-
weight edge.

At each stage, T is a MIST for a connected subgraph
of G ®e e
--"'-_-‘ L]

We now examine Prim more closely v

Main Data Structures for Prim

e Start with adjacency-list representation of G

e Let V be all of the vertices of G, and let V; the
subset consisting of the vertices that we have
placed in the tree so far

e We need a way to keep track of "fringe" edges

— i.e. edges that have one vertexin V;
and the other vertexin V-V,

e Fringe edges need to be ordered by edge weight
— E.g., in a priority queue
e What is the most efficient way to implementa e -

priority queue? i =

Prim detailed algorithm summary

e Create a minheap from the adjacency-list
representation of G
— Each heap entry contains a vertex and its weight
— The vertices in the heap are those notyetin T
— Weight associated with each vertex v is the minimum
weight of an edge that connects v to some vertexin T
— If there is no such edge, v's weight is infinite
e Initially all vertices except start are in heap, have infinite weight
— Vertices in the heap whose weights are not infinite are the
fringe vertices
— Fringe vertices are candidates to be the next vertex (with
its associated edge) added to the tree

e Loop:
— Delete min weight vertex from heap, add itto T
— We may then be able to decrease the weights . :

associated with one or vertices that are adjacent o ==
tov v

MinHeap overview

e We need an operation that a standard binary
heap doesn't support:
decrease(vertex, newWeight)

— Decreases the value associated with a heap element
¢ Instead of putting vertices and associated edge

weights directly in the heap:

— Put them in an array called key][]

— Put references to them in the heap

Min Heap methods

operation description run time

del() | delete and return he location in key[] of) e(og)
the minimum element

keyVal(w) The weight associated with vertex w 6(1)
(minimum weight of an edge from that
vertex to some adjacent vertex that is in the
tree).

MinHeap implementation

e Anindirect heap. We keep the keys in place in an array,
and use another array, "outof", to hold the positions of
these keys within the heap.

e To make lookup faster, another array, "into" tells where
to find an element in the heap.

e i=into[j] iff j=outooffi]
e Picture shows it for a maxHeap, but the idea is the same:

RT66J121312[25| 8 [1091 7 ‘ 18‘

. 1 2 3 4 5 6 7 8

into
A [2lefe]e]s[a]o]4]

66
/\ s
18 8 7 25 - = 0

outof ==
/ Dooooonol | o

def _ init_ (zelf, key):
"rrikey: list of values from which we build initial heap"""”
zelf.n = len(key)-1
zelf.key = key .
gelf.into = [1 for 1 in range(self.n + 1)] MInHeap
gelf.outof = [1 for 1 in range(self.n + 1)
gelf.heapifv ()

def heapify(zeirf): COde

for 1 in range(seif.n/2, 0, -1):

self.siftdown(i, self.n) pa rt 1

def siftdown(seif, 1, n):
mrr gift down for a minHeap.
i is the heap index, (not the index into the key arzay)"""
5 = zelf.outof[1]
temp = self.key[s]
while 2*1i <= n:
c o= 2*%i # ¢ is for child
if ¢ < n and =elf.key[selif.outof[c+l]] <
zelf.key[=elf.outof[c]]:

o +=1
if gelf.key([gelif.outof[c]] < temp:
gelf.outof[i] = =zelf.outof[c]
=elf.into[self.outof[i]] = 1
else:
break
i=c
self.outof[1] = s
self.intols] = 1

MinHeap code part 2

def deletei{szelfl):
"mrdelete the mimimmn value from this heap, returning its wvalue"""
result = gelif.outof[l]
temp = self.outof[1]
gelf.outof[l] = =self.outof[selif.n]
gelf.into[gelf.outof[1]] = 1
self,outcf[self.n] = temp
gelf.intoltenp] = self.n
self.n —=1
self.siftdown{l, =self.n)
return result

def isIn(gelf, w):
rrr returns True iff w is in this heap """
return self.into[w] <= =zelf.n

def keyVal (=zelf, w):
v returns the weight corresponding to wi'"
return gelf.key[w]

NOTE: delete could be simpler, but | kept pointers to the deleted
nodes around, to make it easy to implement heapsort later. N calls to
delete() leave the outof array in indirect reverse sorted order.

MinHeap code part 3

def decrease(self, w, newWeight):
" change the weight corresponding to
vertex w to newWeight (which must be no
larger than its current weight) """
p is for parent, c is for child
gelf.key([w] = newWeight
c = gelf.into[w]
p = c/f2
while p >= 1:
1f self.key[self.outof[p]] <= newWeight:
break
gelf.outof[c] = self.outof(p]
gelf.into[self.ocutof[c]] =
c =P
p=c/2 .
gelf.outof[c] = w "9
gelf.into[w] = ¢ f

Prim Algorithm

VERTEX = 0 # An edge is a list of two numbers:
WEIGHT = 1 # These are what the subscripts (0 and 1) mean.

def prim(adj, start):
rrr parent[v] = parent of v in MST rooted at start """

n = adj.length() # wvertices in graph
key = [None] 4+ [INFINITY]*n # later they will be decreased
parent = [None] + [0]*n # placeholders

keyl[start] = 0
parent[start] = 0
heap = MinHeap(key) # non-infinity wvalue in heap represents fringe vertex
for i in range(l, n+l):
v = heap.delete ()
edges = adj.getlList(v) # =2ll vertices adjacent to v
for edge in edges: # an edge is a list cf: other wertex and weight
w = edge [VERTEX]
if heap.isIn(w) and edge[WEIGHT] < heap.keyVal (w) :
parent[w] = v
heap.decrease (w, edge[WEIGHT])
return parent

def edgeListFromParentArray(parent):
result = []
for 1 in range(l, len(parent);):
if parent[i] > 0:
result.append([parent[i], 11}
return result

10

AdjacencyListGraph class

clazs AdjancencyListGraph:
def _ init__ (self, adjlist):
gelf.vertexlist = [v[0] for v in adjlist]
gelf.adjacencylist = [Vertex(v) for v in self.vertexlist]
for v in adjlist:
self.setvertex(v[0], v[1]}

def getList({zelf, v):
for ver in selif.adjacencylist:
if ver.v == vi
return wver.adj
return None

def length(self):
return len({self.adjacencylList)

def setvertexigelf, v, vList):
i = gelf.vertexlist.index (v}
for v in vList:
if w[0] not in self.vertexlList:
print "Illegal vertex in graph"
exit ()
self.adjacencylList([i].add{v)

Data Structures for Kruskal
e A sorted list of edges (edge list, not adjacency list)

e Disjoint subsets of vertices, representing the
connected components at each stage.
— Start with n subsets, each containing one vertex.
— End with one subset containing all vertices.

e Disjoint Set ADT has 3 operations:
— makeset(i): creates a singleton set containing i.

— findset(i): returns a "canonical" member of its subset.
e |l.e., ifiandjare elements of the same subset,
findset(i) == findset(j)

— union(i, j): merges the subsets containing i and j intoa e

single subset. =

11

Example of operations

e makeset (1)

e makeset (2) e union(4, 6)
e makeset (3) * union (1,3)
e makeset (4) * union(4, 5)
e makeset (5) e findset(2)
e makeset (6) * findset(5)

What are the sets after these operations?

Kruskal Algorithm

Assume vertices are numbered 1..n What can we

(n=|V|) say about
Sort edge list by weight (increasing order) €fficiency of
for i = 1..n: makeset(i) this algorithm
i, count, tree = 1, 0, [] (in terms of |V|
and |E|)?

while count < n-1:
1T findset(edgelist[i].v) I=
findset(edgelist[i].-w):
tree += [edgelist[i]]
count += 1
union(edgelist[i].v, edgelist[i1].w)

1 =1 "= e

return tree v

12

Set Representation

e Each disjoint set is a tree, with the "marked"
element as its root
e Efficient representation of the trees:
— an array called parent
— parent[i] contains the index of i’s parent.
— If i is a root, parent[i]=i

1 7

2/5\4 7'\

/
8 i |1]2[3]|4]|5]|6]7

parent[i]l 1 | 5|7 |5 |5 |7 |7 . e

Using this representation

makeset(i):
findset(i):
mergetrees(i,j):

— assume that i and j are the marked elements from
different sets.

union(i,j):
— assume that i and j are elements from different
sets

13

