MA/CSSE 473
Day 29 ® o

..-.’Q
-

Optimal BST
Conclusion

Then student
guestions about the
exam

Dynamic Programming Example

OPTIMAL BINARY SEARCH TREES

Recap: Optimal Binary Search Trees

* Suppose we have n distinct data keys K;, K,, ...,
K, (in increasing order) that we wish to arrange
into a Binary Search Tree

e This time the expected number of probes for a
successful or unsuccessful search depends on
the shape of the tree and where the search
ends up

e Guiding principle for optimization?
e This discussion follows Reingold and Hansen,

Data Structures. An excerpt on optimal static_
BSTS is posted on Moodle. | use a,and b, .=~

-
- .

where Reingold and Hansen use o, and B, 58 ¢

What contributes to the expected
number of probes?

e Frequencies, depth of node

e For successful search, number of probes is
one more than the depth of the
corresponding internal node

e For unsuccessful, number of probes is
equal to the depth of the corresponding
external node

Optimal BST Notation

Keys are K, K,, ..., K., in internal nodes x,, x,, ..., X,

Let v be the value we are searching for

Fori=1, ...,n, let a, be the probability that v is key K;
Fori=1, ...,n-1, let b, be the probability that K. < v <K,

— Similarly, let b, be the probability that v < K,
and b, the probability that v > K,

— Each b; is associated with external node y,

Note that Za1 +Zb =1

i=1

We can also just use frequencies instead of probabilities
when finding the optimal tree (and divide by their sum to
get the probabllltles if we ever need them). That is V\daat
we will do in an example.

Should we try exhaustive search of all possible BST.

What not to measure

e What about external path length and internal
path length?

e These are too simple, because they do not take
into account the frequencies.

e We need weighted path lengths.

Weighted Path Length

C (I') = Zn: q [1+ depth(xi)] + Zn: bi [depth(y,)] are the external

nodes of the tree

e If we divide this by Xa, + Xb, , we get the expected
number of probes.

e We can also define C recursively:

e C(J)=0. IfT= @ , then

C(T) = C(T,) + C(Ty) + XZa, + Xb,, where the
summations are over all a, and b, for nodes in T

* It can be shown by induction that thesetwo ___ 2 ¢
definitions are equivalent =T
(a homework problem). v

Example

Frequencies of vowel occurrence in English
: AE, I,0,U

e a's: 32, 42, 26, 32, 12
eb's: 0 34, 38 58 95 21

e Draw a tree (with E as root), and see which is
best. (sum of a's and b's is 390).

Strategy

e \We want to minimize the weighted path length

* Once we have chosen the root, the left and
right subtrees must themselves be optimal
EBSTs

e We can build the tree from the bottom up,
keeping track of previously-computed values

Intermediate Quantities

* Cost: Let C; (for 0 <i<j<n) be the cost of an
optimal tree (not necessarily unique) over the

frequencies b, a,,,, by, -3, bJ Then

e C.=0,and C, -mm(C.“+ck,)+Zb+Zaf

e This is true since the subtrees of an optimal tree
must be optimal

e To simplify the computation, we define

* W;=b,and W; = W”1+a+bfor|<J

-NotethatW—b+a .+a;+b, and so

e C;=0,and C; =W; +min(Cik 1+Cy)

* Let R; (root of best tree fromi to j) be a value of k NS
that minimizes Ci\.1 * Gy in the above formulav

Code

initialize the main diagonal
for i in range(n + 1):
R[il1[i] = i
Wil [i] = b[i]
Draw this cell of the table in the given window.

drawSquare (i, i, W[i]l[i], Cc[i]1[i], R[i][i], win, indent, squareSize)

Now populate each of the n upper diagonals:
for d in range (1, n+l): # £ill in this diagonal
The previous diagonals are already filled in.
for 1 in range(n — d + 1):
j =1+ d; # on the dth diagonal, j - 1 = d
opt = i + 1 # until we find a better one
for k in range(i+2, Jj+1):
if clil[k-11+Cc[k]1[j] < clillopt-1]1+C[opt]l[j]:
opt = k
R[i][3] = opt
WIL1[3] = W[il[3-11 + al3jl + bl3j]
Clil[j] = c[illopt-1] + Cloptl[j] + W[il[3]
Draw this cell of the takle in the given window.
drawSquare (i, j, W[il[j1, c[i1[3j], R[i1[j], win, indent,

squareSize)

Results

ROO: 0| RrROL: 1| ROZ2: 2 | RO3: 2 | RO4: 3 | rROG: 4

woo: 0| wol: &6 |wW02: 146 | WO3: 220 | wo4d: 357 | WwO5: 390 o ConStrUCted

coo: 0| c0l: 66 |c02: 212 | c03: 418 | cO0d: 754 | CcO5: 236

R11: 1| R1Z2: 2 | R13: 3 | R14: 3 [R15: 4

cll1: 0| clz: 114 | Cc13: 312 | C14: 624 | C15: 798

R22: 2 | R23: 3 | R24: 4 | R25: 4

by diagonals,
Wil: 36 |wiz: 116 |wi3: 196 | wle; 325 |wis: 350 from main
diagonal

w2 sn | w122 | waer zes wes 2s2 | UPWArd

c22: 0| c23: 122 | c24: 371 | C25: 532
e What is the
R33: 3 | R34: 4 | R35: 4
W33: 58 | w34: 185 | w35: 218 H
HOW to Cc33: 0 | ¢c34: 185 | C35: 346 Optlmal
Co?StrliI(t:t ths Rdd: 4 | R45: 5 tree?
Op Imal tree: wad: 95 | w4as: 1zg
Ccdd: 0 | cd45: 128
Analysis of the
. RLG: 5
algorithm? veer a1

Running time

e Most frequent statement is the comparison
if C[i][k-1]+C[k][j] < C[i]l[opt-1]+C[opt][j]:

n n-d i+d

e How many times
- 2221
does it execute: _ ,
d=1 i=0 k=i+2
simplify(sum(sum{sum{l, k=i+2. . .i+d), i=0. .n-d),d=1. .n)};
1 1 =z
——n+—-n
& &

