MA/CSSE 473
Day 17 °

Divide-and-conquer -
Convex Hull -~

Strassen's
Algorithm: Matrix
Multiplication

(if time, Shell's
Sort)

MA/CSSE 473 Day 17

e Student Questions

Exam 2 specification

Levitin 3" Edition Closest Pairs algorithm

Convex Hull (Divide and Conquer)

Matrix Multiplication (Strassen)
e Shell's Sort (a.k.a. shellsort)

ALGORITHM EfficientClosestPair(P, Q)

Lev I tl n 3 rd e d It I on /ISolves the closest-pair]Jl'OblE]E[l by‘ divide-and-c?onquer ‘
Closest Pa ir Algo rlth m ::]Il]:lllt: An array P of n > 2 points in the Cartesian plane sorted in

nondecreasing order of their x coordinates and an array Q of the

s Sorting by both X and Y 1] same points sorted in nondecreasing order of the y coordinates
. [{Output: Euclidean distance between the closest pair of points
coordinates happens once, ifn<3
before the recursive calls are return the minimal distance found by the brute-force algorithm
made. else
« When doing the comparisons copy the first. /2] points of Pio amay 5
in the inner loop, we compare O
J copy the remaining |n/2] points of P to array P,
all points that are in "y within copy the same [n/2] points from Q to array Q,
d" range, not just those on d, < EfficientClosestPair(P;, Q)
opposite sides of the median e R 00

d +min{d,, d,}

line. _ m < P[[n/2] — 1}x
» Simpler but more distances to copy all the points of O for which |x — m| < d into array S[0..num — 1]
calculate than in what | dminsq « d*
presented on Friday. o) <0 wmen <2 de
k+—i+1
o d while k < num — 1and (S[k].y — S[i]y)? < dminsq
: 1 dminsq < min((S[k].x — S[i].x)?+ (S[k].y — S[i]y)% dminsq)
iy ! kek+1
L |

return sgrt(dminsqg)

A fast algorithm for solving the Convex Hull problem

QUICKHULL

Convex Hull Problem

e Again, sort by x-coordinate, with tie going to larger y-
coordinate.

P

FIGURE 4.8 Upper and lower hulls of a set of points

;

Recursive calculation of Upper Hull

FIGURE 4.9 The idea of quickhull

Simplifying the Calculations

We can simplify two things at once:
* Finding the distance of P from line P,P, 4
e Determining whether P is "to the left" of P,P,
— The area of the triangle through P,=(x,,y,), P,=(x,,y,), and
P3=(x3,Y,) is %2 of the absolute value of the determinant
X N

X Y =XY, XY XY = XY, — XY — XY,

X3 Y;
e For a proof of this property, see
http://mathforum.org/library/drmath/view/55063.html

e How do we use this to calculate distance from P to the line?
— The sign of the determinant is positive if the order of the

three points is clockwise, and negative if it is counter-
clockwise

e Clockwise means that P is "to the left" of directed line segment P,P,
e Speeding up the calculation

Efficiency of quickhull algorithm

FIGURE 4.9 The idea of quickhull

e What arrangements of points give us worst
case behavior?

e Average case is much better. Why?

Strassen's Divide-and-conquer algorithm

FASTER MATRIX MULTIPLICATION

;

Ordinary Matrix Multiplication

How many additions and multiplications are
needed to compute the product of two 2x2
matrices?

COO C01 A00 AOl 00 BOl
= *
ClO C11 A10 Al BlO Bl

;

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of
two matrices can be computed as follows:

[Coo C01] Aoo Aoz o0 Bo
- *
Cio Cp [Alo A11] EIO Bl]
1 tM, -Mg+ M, M; + Mg
=[:/IZ*'M4 M, +Ms‘Mz*'Ms]

Values of M, M,, ..., M; are on the next slide

Formulas for Strassen’s Algorithm

M, = (AOO + All) * (BOO + Bll) How many additions
and multiplications?
M, = (Ag+Ajy) * By
M; = Ago * (Byy - Bys)
M, = Ay * (Byg- By
Ms = (Agg + Agy) * By
Mg = (Ayg - Agg) * (Bgy + Bgy)

M; = (Ag; - Agq) * (Byg + Byy)

The Recursive Algorithm

We multiply square matrices whose size is a
power of 2 (if not, pad with zeroes)

Break up each matrix into four
N/2 x N/2 submatrices.

Recursively multiply the parts.

How many additions and multiplications?

* If we do "normal matrix multiplication" recursively
using divide and conquer?

e |f we use Strassen's formulas?

L]
-
i

Analysis of Strassen’s Algorithm

If Nis not a power of 2, matrices can be padded
with zeros.

Number of multiplications:
M(N) =7M(N/2)+C, M(1)=1

Solution: M(N) = O(N'°8,7) = N2.807
vs. N3 of brute-force algorithm.

What if we also count the additions?

Algorithms with better asymptotic efficiency are
known but they are even more complex.

This is not a divide-and-conquer
algorithm.

Today just seemed like a time when
we might have a few minutes in
which to discuss this interesting
sorting technique

Insertion Sort on Steroids

SHELL'S SORT (A.K.A. SHELLSORT)

;

Insertion sort

e For what kind of arrays is insertion sort reasonably fast?

e What is the main speed problem with insertion sort in general?

e Shell's Sort is an attempt to improve that.

;

Shell's Sort

e We use the following gaps: 7, then 3, then 1 (last one must always
be 1):

21 98 47 32 61 14 83 11 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Sort first 7th using insertion sort:

21 98 47 32 61 14 83 11 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Insert 11

11 98 47 32 61 14 83 21 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Insert 90 (nothing moves), then insert 49

11 98 47 32 61 14 83 21 51 40 9 18 71 63 49 77 44 66 12 55 4 90 81 60 41 22 15 68 2 34
Insert 2

2 98 47 32 61 14 83 11 51 40 9 18 71 63 21 77 44 66 12 55 4 49 81 60 41 22 15 68 90 34
Note that shaded numbers are now much closer to their final positions.

* Next, do the same thing for the next group of 7ts -

Shell's sort 2

On to the next group of 7's:

2 98 47 32 61 14 83 11 51 40 9 18 71 63 21 77 44 66 12 55 4 49 81 60 41 22 15 68 90 34
After sorting each group of 7:

2 34 47 32 61 14 83 11 51 40 9 18 71 63 21 77 44 66 12 55
34 40 32 61 14 83 11 51 44 9 18 71 63 21 77 47 66 12 55
34 40 9 61 14 83 11 51 44 32 18 71 63 21 77 47 41 12 55 49 81 60 66 22 15 68 90 98
34 40 9 12 14 83 11 51 44 32 18 71 63 21 77 47 41 22 55 49 81 60 66 61 15 68 90 98
34 40 9 12 14 83 11 51 44 32 18 15 63 21 77 47 41 22 55 49 81 60 66 61 71 68 90 98
2 34 40 9 12 14 4 11 51 44 32 18 15 63 21 77 47 41 22 55 68 49 81 60 66 61 71 83 90 98
Done with the gap of 7 Still more numbers are closer to where they will end up.

What is the worst-case number of comparisons for this phase?

49 81 60 41 22 15 68 90 98
49 81 60 41 22 15 68 90 98

N N NN
B R ARE A S

Shell's sort 3

Next: Gap of 3:

2 34 40 4 12 14 9 11 51 15 32 18 22 63 21 44 47 41 49 55 68 66 81 60 77 61 71 83 90 98
2 11 40 4 12 14 9 32 51 15 34 18 22 47 21 44 55 41 49 61 68 66 63 60 77 81 71 83 90 98
2 11 14 4 12 18 9 32 21 15 34 40 22 47 41 44 55 51 49 61 60 66 63 68 77 81 71 83 90 98
Finally we do a regular insertion sort, but notice that there will be very little movement.

e Why bother if we are going to do a regular insertion sort at the
end anyway?

e Analysis?
..‘ -;‘i\.
Code from Weiss book
/**
* Shellsort, using a sequence suggested by Gonnet.
"

public static <AnyType extends Comparable<? super AnyType>>
void shellsort(AnyType [] a)

{
for(int gap = a.length / 2; gap > 0;
gap=gap==27?1: (int) Cgap/ 2.2))
for(int i = gap; i < a.length; i++)
{
AnyType tmp = a[i];
int j = 1;
for(; j >= gap && tmp.compareTo(a[j-gap]) < 0; j -= gap)
al j1=alj-gap I;
al[j] = tmp;
}
}

10

