

MA/CSSE 473 Day 17

- Student Questions
- Exam 2 specification
- Levitin 3rd Edition Closest Pairs algorithm
- Convex Hull (Divide and Conquer)
- Matrix Multiplication (Strassen)
- Shell's Sort (a.k.a. shellsort)

Levitin 3rd edition Closest Pair Algorithm

- Sorting by both X and Y coordinates happens once, before the recursive calls are made
- When doing the comparisons in the inner loop, we compare all points that are in "y within d" range, not just those on opposite sides of the median line.
- Simpler but more distances to calculate than in what I presented on Friday.


```
ALGORITHM EfficientClosestPair(P, Q)
    //Solves the closest-pair problem by divide-and-conquer
    //Input: An array P of n \ge 2 points in the Cartesian plane sorted in
              nondecreasing order of their x coordinates and an array Q of the
              same points sorted in nondecreasing order of the y coordinates
    //Output: Euclidean distance between the closest pair of points
         return the minimal distance found by the brute-force algorithm
    else
         copy the first \lceil n/2 \rceil points of P to array P_1
         copy the same \lceil n/2 \rceil points from Q to array Q_1
         copy the remaining \lfloor n/2 \rfloor points of P to array P_r
         copy the same \lfloor n/2 \rfloor points from Q to array Q_r
         d_l \leftarrow EfficientClosestPair(P_l, Q_l)
         d_r \leftarrow EfficientClosestPair(P_r, Q_r)
         d \leftarrow \min\{d_l, d_r\}
         m \leftarrow P[\lceil n/2 \rceil - 1].x
         copy all the points of Q for which |x - m| < d into array S[0..num - 1]
         dminsq \leftarrow d^2
         for i \leftarrow 0 to num - 2 do
              k \leftarrow i + 1
              while k \le num - 1 and (S[k].y - S[i].y)^2 < dminsq
                  dminsq \leftarrow \min((S[k].x - S[i].x)^2 + (S[k].y - S[i].y)^2, dminsq)
                  k \leftarrow k + 1
    return sqrt(dminsq)
```


Simplifying the Calculations

We can simplify two things at once:

- Finding the distance of P from line P₁P_{2, and}
- Determining whether P is "to the left" of P₁P₂
 - The area of the triangle through $P_1=(x_1,y_1)$, $P_2=(x_2,y_2)$, and $P_3=(x_3,y_e)$ is ½ of the absolute value of the determinant

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = x_1 y_2 + x_3 y_1 + x_2 y_3 - x_3 y_2 - x_2 y_1 - x_1 y_3$$

- For a proof of this property, see http://mathforum.org/library/drmath/view/55063.html
- How do we use this to calculate distance from P to the line?
- The sign of the determinant is positive if the order of the three points is clockwise, and negative if it is counterclockwise
 - Clockwise means that P₃ is "to the left" of directed line segment P₁P₂
- Speeding up the calculation

Efficiency of quickhull algorithm

- What arrangements of points give us worst case behavior?
- Average case is much better. Why?

Strassen's Divide-and-conquer algorithm

FASTER MATRIX MULTIPLICATION

Ordinary Matrix Multiplication How many additions and multiplications are needed to compute the product of two 2x2 matrices? $\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} * \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{bmatrix}$

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:

$$\begin{bmatrix} C_{00} & C_{01} \\ & & \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ & & \\ A_{10} & A_{11} \end{bmatrix} * \begin{bmatrix} B_{00} & B_{01} \\ & & \\ B_{10} & B_{11} \end{bmatrix}$$

$$= \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

Values of M_1, M_2, \dots, M_7 are on the next slide

Formulas for Strassen's Algorithm

$$M_1 = (A_{00} + A_{11}) * (B_{00} + B_{11})$$

$$M_2 = (A_{10} + A_{11}) * B_{00}$$

$$M_3 = A_{00} * (B_{01} - B_{11})$$

$$M_4 = A_{11} * (B_{10} - B_{00})$$

$$M_5 = (A_{00} + A_{01}) * B_{11}$$

$$M_6 = (A_{10} - A_{00}) * (B_{00} + B_{01})$$

$$M_7 = (A_{01} - A_{11}) * (B_{10} + B_{11})$$

How many additions and multiplications?

The Recursive Algorithm

- We multiply square matrices whose size is a power of 2 (if not, pad with zeroes)
- Break up each matrix into four N/2 x N/2 submatrices.
- Recursively multiply the parts.
- How many additions and multiplications?
 - If we do "normal matrix multiplication" recursively using divide and conquer?
 - If we use Strassen's formulas?

Analysis of Strassen's Algorithm

If *N* is not a power of 2, matrices can be padded with zeros.

Number of multiplications:

$$M(N) = 7M(N/2) + C$$
, $M(1) = 1$

Solution: $M(N) = \Theta(N^{\log_2 7}) \approx N^{2.807}$

vs. N^3 of brute-force algorithm.

What if we also count the additions?

Algorithms with better asymptotic efficiency are known but they are even more complex.

This is not a divide-and-conquer algorithm.

Today just seemed like a time when we might have a few minutes in which to discuss this interesting sorting technique

Insertion Sort on Steroids

SHELL'S SORT (A.K.A. SHELLSORT)

Insertion sort

- For what kind of arrays is insertion sort reasonably fast?
- What is the main speed problem with insertion sort in general?
- Shell's Sort is an attempt to improve that.

Shell's Sort

• We use the following gaps: 7, then 3, then 1 (last one must always be 1):

```
21 98 47 32 61 14 83 11 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Sort first 7th using insertion sort:
21 98 47 32 61 14 83 11 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Insert 11
11 98 47 32 61 14 83 21 51 40 9 18 71 63 90 77 44 66 12 55 4 49 81 60 41 22 15 68 2 34
Insert 90 (nothing moves), then insert 49
11 98 47 32 61 14 83 21 51 40 9 18 71 63 49 77 44 66 12 55 4 90 81 60 41 22 15 68 2 34
Insert 2
2 98 47 32 61 14 83 11 51 40 9 18 71 63 21 77 44 66 12 55 4 49 81 60 41 22 15 68 90 34
Note that shaded numbers are now much closer to their final positions.
```

Next, do the same thing for the next group of 7ths

Shell's sort 2

On to the next group of 7's: 2 **98** 47 32 61 14 83 11 <mark>51</mark> 40 9 18 71 63 21 **77** 44 66 12 55 4 49 <mark>81</mark> 60 41 22 15 68 90 <mark>34</mark> After sorting each group of 7: 2 34 47 32 61 14 83 11 51 40 9 18 71 63 21 77 44 66 12 55 4 49 81 60 41 22 15 68 90 98 2 34 40 32 61 14 83 11 51 44 9 18 71 63 21 77 47 66 12 55 4 49 81 60 41 22 15 68 90 98 2 34 40 9 61 14 83 11 51 44 32 18 71 63 21 77 47 41 12 55 4 49 81 60 66 22 15 68 90 98 2 34 40 9 12 14 83 11 51 44 32 18 71 63 21 77 47 41 22 55 4 49 81 60 66 61 15 68 90 98 2 34 40 9 12 14 83 11 51 44 32 18 15 63 21 77 47 41 22 55 4 49 81 60 66 61 71 68 90 98 2 34 40 9 12 14 4 11 51 44 32 18 15 63 21 77 47 41 22 55 68 49 81 60 66 61 71 83 90 98 Done with the gap of 7 Still more numbers are closer to where they will end up.

What is the worst-case number of comparisons for this phase?

Shell's sort 3

- Why bother if we are going to do a regular insertion sort at the end anyway?
- Analysis?

Code from Weiss book