


MA/CSSE 473 Day 13

- Student Questions on exam or anything else
- Towers of Hanoi
- Subset generation Gray code
- Permutations and order

Towers of Hanoi

- Move all disks from peg A to peg B
- One at a time
- Never place larger disk on top of a smaller disk
- Demo
- Code
- Recurrence and solution

Towers of Hanoi code public class TowersOfHanoi { public TowersOfHanoi (int totalDisks) { Recurrence moveTower(totaldisks, 1, 2, 3); for number of moves, Moves the specified number of disks from one tower to another by moving a subtower of n-1 disks out of the way, moving one and its disk, then moving the subtower back. Base case of 1 disk. solution? private void moveTower (int numDisks, int start, int end, int temp) { if (numDisks == 1) moveOneDisk (start, end); else { moveTower (numDisks-1, start, temp, end); moveOneDisk (start, end); moveTower (numDisks-1, temp, end, start); ************************ private void moveOneDisk (int start, int end) { System.out.println ("Move one disk from " + start + " to " + end);

Permutations and order

number	permutation	number	permutation	Give
0	0123	12	2013	of 0
1	0132	13	2031	
2	0213	14	2103	we (
3	0231	15	2130	next
4	0312	16	2301	the
5	0321	17	2310	sequ
6	1023	18	3012	•
7	1032	19	3021	Give
8	1203	20	3102	of 0.
9	1230	21	3120	dete
10	1302	22	3201	
11	1320	23	3210	perr
				sequ

- Given a permutation of 0, 1, ..., n-1, can we directly find the next permutation in the lexicographic sequence?
- Given a permutation of 0..n-1, can we determine its permutation sequence number?
- Given n and i, can we directly generate the ith permutation of 0, ..., n-1?

Subset generation

- **Goal:** generate all subsets of {0, 1, 2, ..., N-1}
- Bottom-up (decrease-by-one) approach
- First generate S_{n-1} , the collection of all subsets of $\{0, ..., N-2\}$
- Then $S_n = S_{n-1} \cup \{ S_{n-1} \cup \{n-1\} : s \in S_{n-1} \}$

Subset generation

- Numeric approach: Each subset of {0, ..., N-1} corresponds to an bit string of length N where the ith bit is 1 iff i is in the subset.
- So each subset can be represented by N bits.
- A simple loop generates them all in "numeric" order.

Subset generation

- Minimal change algorithm:
- flip exactly one bit each time we generate the next subset.
- Most common minimal-change approach:
 Binary-reflected Gray code.
 See the links in the announcements page and the schedule page.
- Transition sequences: which bit to flip
- 0 010 0102010 010201030102010

Recap: Permutations and Order

number	permutation	number	permutation
0	0123	12	2013
1	0132	13	2031
2	0213	14	2103
3	0231	15	2130
4	0312	16	2301
5	0321	17	2310
6	1023	18	3012
7	1032	19	3021
8	1203	20	3102
9	1230	21	3120
10	1302	22	3201
11	1320	23	3210

- Given a permutation of 0, 1, ..., n-1, can we directly find the next permutation in the lexicographic sequence?
- Given a permutation of 0..n-1, can we determine its permutation sequence number?
- Given n and i, can we directly generate the ith permutation of 0, ..., n-1?

Discovery time (with two partners)

- Which permutation follows each of these in lexicographic order?
 - 183647520 471638520
 - Try to write an algorithm for generating the next permutation, with only the current permutation as input.
- If the lexicographic permutations of the numbers [0, 1, 2, 3, 4, 5] are numbered starting with 0, what is the number of the permutation 14032?
 - General form? How to calculate efficiency?
- In the lexicographic ordering of permutations of [0, 1, 2, 3, 4, 5], which permutation is number 541?
 - How to calculate efficiently?