

MA/CSSE 473 Day 08

- Student questions
- Fermat's Little Theorem
- Implications of Fermat's Little Theorem
 - What we can show and what we can't
- Frequency of "non-Fermat" numbers
- Carmichael numbers
- Randomized Primality Testing.

Why a certain math prof who sometimes teaches this course does not like the Levitin textbook...

Fermat's Little Theorem (1640 AD)

- Formulation 1: If p is prime, then for every integer a with $1 \le a < p$, $a^{p-1} \equiv 1 \pmod{p}$
- Formulation 2: If p is prime, then for every integer a with $1 \le a < p$, $a^p \equiv a \pmod{p}$
- These are clearly equivalent.
 - How do we get from each to the other?
- We will examine a combinatorial proof of the first formulation.

Fermat's Little Theorem: Proof (part 1)

- Formulation 1: If p is prime, then for every number a with $1 \le a < p$, $a^{p-1} \equiv 1 \pmod{p}$
- Let S = {1, 2, ..., p-1}
- Lemma
 - For any nonzero integer a, multiplying all of the numbers in S by a (mod p) permutes S
 - I.e. $\{a \cdot n \pmod{p} : n \in S\} = S$

i	1	2	3	4	5	6
3i	3	6	2	5	1	4

- **Example: p**=7, a=3.
- Proof of the lemma
 - Suppose that $\mathbf{a} \cdot \mathbf{i} \equiv \mathbf{a} \cdot \mathbf{j} \pmod{\mathbf{p}}$.
 - Since **p** is prime and $\mathbf{a} \neq 0$, **a** has an inverse.
 - Multiplying both sides by \mathbf{a}^{-1} yields $\mathbf{i} \equiv \mathbf{j} \pmod{\mathbf{p}}$.
 - Thus, multiplying the elements of S by a (mod p) takes each element to a different element of S.
 - Thus (by the pigeonhole principle), every number
 1..p-1 is a·i (mod p) for some i in S.

Fermat's Little Theorem: Proof (part 2)

- Formulation 1: If p is prime, then for every number a with 1 ≤ a <p, a^{p-1} ≡ 1 (mod p)
 - $\mathbf{a}^{\mathbf{p}} = \mathbf{1} \pmod{\mathbf{p}}$
- Let S = {1, 2, ..., **p**-1}

Recap of the Lemma:
 Multiplying all of the numbers in S
 by a (mod p) permutes S

• Therefore:

 $\{1, 2, ..., p-1\} = \{a \cdot 1 \pmod{p}, a \cdot 2 \pmod{p}, ... a \cdot (p-1) \pmod{p}\}$

- Take the product of all of the elements on each side .
 (p-1)! ≡ a^{p-1}(p-1)! (mod p)
- Since p is prime, (p-1)! is relatively prime to p, so we can divide both sides by it to get the desired result: a^{p-1} ≡ 1 (mod p)

Recap: Fermat's Little Theorem

- Formulation 1: If p is prime, then for every number a with $1 \le a < p$, $a^{p-1} \equiv 1 \pmod{p}$
- Formulation 2: If p is prime, then for every number a with $1 \le a < p$, $a^p \equiv a \pmod{p}$

Memorize this one. Know how to prove it.

Easy Primality Test?

"composite"

means

"not prime"

- Is N prime?
- Pick some a with 1 < a < N
- Is $a^{N-1} \equiv 1 \pmod{N}$?
- If so, N is prime; if not, N is composite
- Nice try, but...
 - Fermat's Little Theorem is not an "if and only if" condition.
 - It doesn't say what happens when N is not prime.
 - N may not be prime, but we might just happen to pick an a for which a^{N-1}≡ 1 (mod N)
 - **Example:** 341 is not prime (it is 11.31), but $2^{340} \equiv 1 \pmod{341}$
- Definition: We say that a number a passes the Fermat test
 if a^{N-1} = 1 (mod N). If a passes the Fermat test but N is composite,
 then a is called a Fermat liar, and N is a Fermat pseudoprime.
- We can hope that
 - if N is composite, then many values of a will fail the Fermat test
- It turns out that this hope is well-founded
- If any integer that is relatively prime to N fails the test, then at least half of the numbers a such that 1 ≤ a < N also fail it.

How many "Fermat liars"?

- If N is composite, suppose we randomly pick an a such that 1 ≤ a < N.
- If gcd(a, N) = 1, how likely is it that a^{N-1} is $\equiv 1 \pmod{n}$?
- If $\mathbf{a}^{N-1} \not\equiv 1 \pmod{N}$ for any \mathbf{a} that is relatively prime to N, then this must also be true for at least half of the choices of such $\mathbf{a} < \mathbf{N}$.
 - Let b be some number (if any exist) that passes the Fermat test, i.e. $b^{N-1} \equiv 1 \pmod{N}$.
 - Then the number a.b fails the test:
 - $(ab)^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1}$, which is not congruent to 1 mod N.
 - Diagram on whiteboard.
 - For a fixed a, f: b→ab is a one-to-one function on the set of b's that pass the Fermat test,
 - so there are at least as many numbers that fail the Fermat test as pass it.
- Continued next session ...

Carmichael Numbers

- A Carmichael number is a composite number N such that
- ∀ a ∈ {1, ..N-1} (if gcd(a, N)=1 then a^{N-1} ≡ 1 (mod N))
 i.e. every possible a passes the Fermat test.
 - The smallest Carmichael number is 561
 - We'll see later how to deal with those
 - How rare are they? Let C(X) = number of Carmichael numbers that are less than X.

n	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
C(10")	1	7	16	43	105	255	646	1547	3605	8241	19279	44706	105212	246683	585355	1401644	3381806	8220777

- For now, we pretend that we live in a Carmichael-free world

Where are we now?

- For a moment, we pretend that Carmichael numbers do not exist.
- If N is prime, $a^{N-1} \equiv 1 \pmod{N}$ for all 0 < a < N
- If N is not prime, then $a^{N-1} \equiv 1 \pmod{N}$ for at most half of the values of a<N.
- $Pr(a^{N-1} \equiv 1 \pmod{N})$ if N is prime) = 1 $Pr(a^{N-1} \equiv 1 \pmod{N})$ if N is composite) $\leq \frac{1}{2}$
- How to reduce the likelihood of error?

The algorithm (modified)

- To test N for primality
 - Pick positive integers a_1 , a_2 , ..., $a_k < N$ at random
 - For each a_i , check for $a_i^{N-1} \equiv 1 \pmod{N}$
 - Use the Miller-Rabin approach, (next slides) so that Carmichael numbers are unlikely to thwart us.
 - If a_i^{N-1} is not congruent to 1 (mod N), or Miller-Rabin test produces a non-trivial square root of 1 (mod N)
 - return false

Does this work?

return true

Note that this algorithm may produce a "false prime", but the probability is very low if k is large enough.

Miller-Rabin test

- A Carmichael number N is a composite number that passes the Fermat test for all a with 1 ≤ a<N and gcd(a, N)=1.
- A way around the problem (Rabin and Miller): Note that for some t and u (u is odd), N-1 = 2^tu.
- As before, compute a^{N-1} (mod N), but do it this way:
 - Calculate a^u (mod N), then repeatedly square, to get the sequence a^u (mod N), a^{2u} (mod N), ..., a^{2^tu} (mod N) $\equiv a^{N-1}$ (mod N)
- Suppose that at some point, $a^{2^i u} \equiv 1 \pmod{N}$, but $a^{2^{i-1}u}$ is not congruent to 1 or to N-1 (mod N)
 - then we have found a nontrivial square root of 1 (mod N).
 - We will show that if 1 has a nontrivial square root (mod N), then N cannot be prime.

Example (first Carmichael number)

- N = 561. We might randomly select a = 101.
 - Then $560 = 2^4 \cdot 35$, so u=35, t=4
 - $a^u \equiv 101^{35} \equiv 560 \pmod{561}$ which is -1 (mod 561) (we can stop here)
 - $a^{2u} \equiv 101^{70} \equiv 1 \pmod{561}$
 - **–** ..
 - $a^{16u} \equiv 101^{560} \equiv 1 \pmod{561}$
 - So 101 is not a witness that 561 is composite (we say that 101 is a Miller-Rabin liar for 561, if indeed 561 is composite)
- Try a = 83
 - $a^u \equiv 83^{35} \equiv 230 \pmod{561}$
 - $a^{2u} \equiv 83^{70} \equiv 166 \pmod{561}$
 - $a^{4u} \equiv 83^{140} \equiv 67 \pmod{561}$
 - $a^{8u} \equiv 83^{280} \equiv 1 \pmod{561}$
 - So 83 is a witness that 561 is composite, because 67 is a non-trivial square root of 1 (mod 561).