MA/CSSE 473

Day 04 ®

-
> -

Multiplication
runtime

Multiplication based
on Gauss formula

Mathematical
induction review

MA/CSSE 473 Day 04

e Addition

e MultiplicationDivide and Conquer
Multiplication a la Gauss

e Mathematical Induction review

e Tiling with Trominoes (if there is time)
— http://www3.amherst.edu/~nstarr/trom/puzzle-

8by8/

What questions do you have? .

EFFICIENT INTEGER ADDITION
AND MULTIPLICATION

The catch!

Are addition and multiplication constant-time

operations?

We take a closer look at the "basic operations”

First we look at Addition:

At most, how many digits are in the sum of three

decimal one-digit numbers?

e |s the same result true in binary and every other
base?

e Add two k-bit positive integers (53+35):

Carry: 1 1 1 1

1 1 0 1 0 1 (35
1 0 0 0 1 1 (s3) ° o
1 0 1 1 0 0 0 (s8) " e

e So adding two k-bit integers is O(). v

"Ordinary" Multiplication
of two k-bit numbers
e Example: multiply 13 by 11

1101 times 1, shifted thrice)
1 1 1 (binary143)

1 1 0 1

x 1 0 1 1
1 1 O 1 (1101times1)
1 0 1 (1101 times 1, shifted once)
0 O (1101 times 0, shifted twice)
1 (
1

[elleNeN

0
1 1
1 0 0
e There are K shift operations, followed by
addition of kK rows of 2K bits each, so

the whole multiplication is ©() ?

e Can we do better? v

Multiplication by an Ancient Method

e This approach was known to Al Khwarizimi
e According to Dasgupta, et al, still used today in
some European countries

e Repeat until 15t number is 1, keeping all results:
— Divide 1t number by 2 (rounding down)
— double 2" number

e Example
Lo 13 Then strike out any rows whose
= 26 first number is even, and add up
1 104 the remaining numbers in the

143 second column.

e Correct? Analysis v

RECUrsIve code: ancient
multiply algorithm

def multiply(m, n):
"multiply two integers m and n, where n >= 0"
if n == 0:
return 0
z = multiply (m, n // 2)
ifn%2==0:
return 2 * z
return m + 2 * z
print (multiply(12, 17))

If both m and n are k-bit numbers, what is the
running time of this algorithm?

New Multiplication Approach

e Divide and Conquer
e To multiply two k-bit integers x and y:
— Split each into its left and right halves so that
x=22x +x;, and y=2%y +vy,
— The straightforward calculation of xy would be
(242x, + xg)(2¥2y, +yg) =
2%y, + 22(x, YR * XgY1) + XgYg
— Code on next slide

— Thus T(k) =) Solution? TN e

For reterence: Ihe Master

Theorem
e The Master Theorem for Divide and Conquer
recurrence relations:
For details, see Levitin

e Consider the recurrence pages 483.485 or
T(n) = aT(n/b) +f(n), T(1)=C, Weiss section 7.5.3.
where f(n) = (n*) and k>0,

Grimaldi's Theorem

e The solution is 10.1 is a special case of

_ G(nk) if 3 < bk the Master Theorem.

— B(nklogn) if a=Dbk

— B(nlo8x?) if a>bk
We will use this theorem often. You should - _: :
review its proof soon (Weiss's proof is a bit e i
easier than Levitin's). '

Code for divide-and-conquer
multiplication
def multiply(xz, v, k):

rrrmultiply two integers x and y, where k >= 0 is a power of 2,
and k is at least as large as the maximum number of bits in x or y"'"/

if k== 1:
return x ¥ vy

k over two = k // 2
two_to_the_k over_two = 1 << k over_two # a single k-bit right shift
xL, xR x // two_to_the k over two, x % two_to_the k over two

vL, VR y // two_to_the k over two, y % two_to_the k over two
note that these two operations could be done by bit shifts and masking.

pl = multiply (xL, yL, k over_ two)
p2 = multiply (xL, yR, k over_ two)
p3 = multiply (xR, yL, k over_two)
p4 = multiply (xR, VR, k_over two)

return (pl << k) + ((p2 + p3) << k_over_two) + p4

print {(multiply (3000, 40000, 1&))

Can we do better than O(k?)?

e |s there an algorithm for multiplying two k-bit
numbers in time that is less than O(k?)?

e Basis: A discovery of Carl Gauss (1777-1855)
— Multiplying complex numbers:
— (a + bi)*(c+di) = ac — bd + (bc + ad)i

— Could also be expressed as ordered pairs
- [a, b]*[c,d] =[ac-bd, bc+ad]

Gauss's Algorithm

¢ [a, b]*[c,d] = [ac-bd, bc+ad] (complex number
multiplication)
— Needs 4 real-number multiplications and 3 additions
e But bc + ad = (a+b)(c+d) — ac —bd
— And we have already computed ac and bd when we
computed the real part of the product!

e Thus we can do the complex product with 3
multiplications and 5 additions

e Additions are so much faster than multiplications
that this is a good trade-off.

e A little savings, but not a big deal until applied
recursively!

e We apply the same general idea to recursive
divide-and-conquer multiplication »

(next slide — first 2/3 of the code is unchanged) W

Code for Gauss-based Algorithm

def multiply(x, v, k):
"rrmultiply two integers x and y, where k »>= 0 is a power of 2,
and k is at least as large as the maximum number of bits in x or y"""

if k == 1:
return x ¥ y

k over_two = k // 2 # simply shifts the bits one to the right.
two_to_the k over_two = 1 << k_over_two
xL, xR = x // two_to_the_k_over_two, x % two_to_the_k_over_two

yL, yR = y // two_to_the k over_two, y % two_to_the_k over_ two
note that these two operations could be deone by bit shifts and masking.

pl = multiply (=L, yL, k_over_ two)
p2 = multiply (xL+xR, yL+yR, k_over_ two)
p3 = multiply (=R, VR, k_over_ two)

return (pl << k) + ((p2 - p3 - pl) << k_over_two) + p3

print (multiplvy (1000, 1000, 16))}

. o™
Recurrence relation: solution: v

Is this really a lot faster?

e Standard multiplication: 6(k?)
e Divide and conquer with Gauss trick: 6(k1->?)

e But there is a lot of additional overhead with
Gauss, so standard multiplication is faster for
small values of k.

e In Maple, pioe({2 ¥} k=0.100) """

2000+
* |n reality we would not let the #0004
recursion go down to the 4000

single bit level, but only down 2g54
to the number of bits that our
machine can multiply in

hardware without overflow. o~

0o 4i3n5i:| 50 100

Back to the "review thread"

QUICK REVIEW OF
MATHEMATICAL INDUCTION

Induction Review

e To show that property* P(n) is true for all
integers n2n,, it suffices to show:
— Ordinary Induction
* P(ng) is true
e For all k=n,, if P (k) is true, then P(k+1) is also true.
or
— Strong Induction

* P(ny) is true (sometimes you need multiple base cases)

e For all k>n,, if P(j) is true for all j with ny < j <k, then P(k)
is also true.

* |n this context, a property is a function whose

domain is a subset of the non-negative integers and e
whose range is {true, false} v

Proof by Induction

On Liquor Production by David M. Smith

A friend who's in liquor production
Owns a still of astounding construction.
The alcohol boils

Through old magnetic coils...

She says that it's "proof by induction."

Disclaimer: The presentation of this multiple pun should not be taken as an implied

endorsement on the part of the instructor of the production and/or consumption of liquor.

For example, according to the National Institutes of Health
(https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/alcohol-facts-and-
statistics), 31% of traffic deaths involve alcohol. NIH studies revealed that young people who

began drinking before age 15 are four times more likely to develop alcohol dependence during

their lifetime than those who began drinking at age 21 or later. Those that drank before age 15

are also seven times more likely to report having been in a traffic crash because of drinking

both during adolescence and adulthood. Alcohol also plays a significant role in risky sexual ® e
behavior and increases the risk of physical and sexual assault. Among college students under_o.= _=a o

age 21, 50,000 experience alcohol-related date rape, and 43,000 are injured by another . =
student who has been drinking. Each year, approximately 5,000 persons under the age of Zv

die from causes related to underage drinking. These deaths include about 1,600 homicides
300 suicides.

Induction examples

N .
e ForallN>0, D i-2'=2"*(N-1)+2

i=1

— This is formula 7 on P 470

e Show that any postage amount of 24 cents or
more can be achieved using only 5-cent
stamps and 7-cent stamps.

Another Induction Example

Tiling with Trominoes

e We saw that a 2"x2" checkerboard can be tiled

with dominoes.
e What about trominoes?
e Clearly, we can't tile an entire board!

¢ Definition: A deficient rectangular grid of squares

has one square missing.

e |t's easy to see that we can tile any 2x2 deficient

rectangle! (We can rotate the tromino)

Note: HW 4 is mainly about tiling with trominoes.

Trominoes Continued

e What about a 4 x 4 deficient rectangle?

e Can we tile this?

Fun with Tromino tiling:
http://www3.amherst.edu/~nstarr/trom/puzzle-8by8/

10

Trominoes Continued

e Prove by induction that we can tile any 2"x2" deficient
rectangle with trominoes

e Base case: n=1 Done

e Assume that we can do it for n=k

e Show that we can do it for n=k+1

e Assume WLOG that the missing square is in the lower
right quadrant of the rectangle
— If it is somewhere else, we could simply rotate the board.

— Can we place one tromino in a way that allows us to use the
induction assumption?

— Draw the picture

Another Induction Example
Extended Binary Tree (EBT)

An Extended Binary tree is either
— an external node, or
— an (internal) root node and two
EBTs T, and Tg.
We draw internal nodes as circles and external nodes as squares.
— Generic picture and detailed picture.
This is simply an alternative way of viewing binary trees, in which

we view the null pointers as “places” where a search can end or
an element can be inserted.

11

A property of EBTs

e Property P(N): For any N>=0, any EBT with N internal nodes has
external nodes.

e Proof by strong induction, based on the recursive definition.
— A notation for this problem: IN(T), EN(T)

— Note that, like some other simple examples, this one can be
done without induction.

— But the purpose of this exercise is practice with strong
induction, especially on binary trees.

e What is the crux of any induction proof?

— Finding a way to relate the properties for larger values (in
this case larger trees) to the property for smaller values
(smaller trees). Do the proof now.

12

