MA/CSSE 473
Day 03 ®

>
Asymptotics .. ’.

A Closer Look at
Arithmetic

With another student,
try to write a precise,
formal definition of

“t(n) is in O(g(n))”

Day 3

Student questions

— Course policies?

— HW assignments?

— Anything else?

The two “early course” threads (review, arithmetic)
Review of asymptotic notation

Finish the Fibonacci discussion
(efficiently compute powers of a matrix)

Addition and multiplication algorithms

Two threads in lectures

e Each day at the beginning of the course
e Some review

e Continue with discussion of efficiency of
Fibonacci and arithmetic.

Review thread for today:

Asymptotics (O, ©, Q)

Mostly a recap of my 230 lecture on same topic.
I

Rapid-fire Review:
Definitions of O, 6, Q

e | will re-use many of my slides from CSSE 230
— Some of the pictures are from the Weiss book.

e And some pictures are Levitin's.

e Avery similar presentation appears in Levitin,
section 2.2

e Since this is review, we will move much faster
thanin 230

Asymptotic Analysis

e We usually only care what happens
when N (the size of a problem's input)
gets to be large

e |s the runtime linear? quadratic?
exponential? etc.

Asymptotic order of growth

Informal definitions

A way of comparing functions that ignores constant
factors and small input sizes

* O(g(n)): the class of functions t(n) that grow
no faster than some constant times g(n)

* O(g(n)): the class of functions t(n) that grow
at the same rate as g(n)

* (g(n)): the class of functions t(n) that grow
at least as fast as some constant times g(n).—-_= .

Formal Definition

e We will write a precise formal definition of

"t(n)€O(g(n))"

— This is one thing that students in 473 should soon
be able to write from memory...

— ... and also understand it, of course!

Big-oh (a.k.a. Big O)

F

] og{n}
]
| t(n)
i
1
1
|
1
1
1
1
1
l
1

doesn't |

matter f
:
1
1
! -
n i L

0

Figure 2.1 Big-oh notation: #(n) € O(g(n) v

Prove a Big O Property

e For any function g(n), O(g(n)) is a set of functions

e We say that t(n) €0(g(n)) iff there exist two non-
negative constants c and n, such that
foralln=n,, t(n)<cg(n)

e Rewrite using V and 1 notation
e Use the formal definition to prove:

If f(n)€0O(g(n)) and t(n) e O(g(n)),
then f(n)+t(n)eO(g(n))

Answer (Summer Only)

e Recall: t(n) €O(g(n)) iff there exist two positive constants ¢
and n, such that
foralln=ng, t(n)<cg(n)

* If f(n)eO(g(n)) and t(n)O(g(n)),
then f(n)+t(n)eO(g(n))

* Proof By definition, there are constants c,, ¢,, n;, n,, such
that foralln>n,, f(n)<c, g(n), and foralln>n,,
t(n) <c, g(n). Let n,=max(n,, n2), and let c=cl + c2.
Then forany n>n,, f(n)+t(n) <c, g(n) +c, g(n) =cg(n).

® @
- o=
- =" 8

Big-omega

t{n)

1

doesn't
matter

—

0
L

[]
-
- =0

Fig. 2.2 Big-omega notation: t(n} € Q(gin)) W

Big-theta

c,g({n)
A
t{n)
59(n)
doesn't
matter
s > 11

0
® @
-
o = 8

Figure 2.3 Big-theta notation: t(n) € @(g(n)) W

Big O examples

¢ All that we must do to prove that t(n) is O(g(n)) is produce a
pair of numbers ¢ and n, that work for that case.

e t(n)=n, g(n)=n2
e t(n)=n, g(n)=3n.

e t(n)=n+12,g(n)=n.
We can choose c=3 and n, =6, or c=4 and n, = 4.

e t(n)=n+sin(n)

e t(n)=n2+sqrt(n)

In CSSE 230, we do these in great detail in class.

In 473, | say, "work on them if you need =
review/practice", and | give you a few possible v
answers on the next slide.

Answers to examples

e For this discussion, assume that all functions have non-
negative values, and that we only care about n>0.
For any function g(n), O(g(n)) is a set of functions We say that
a function f(n) is (in) O(g(n)) if there exist two positive
constants ¢ and n, such that for all n>n,, f(n)<cg(n).

¢ So all we must do to prove that f(n) is O(g(n)) is produce two
such constants.

e f(n)=n+12, g(n)="727>.
— g(n)=n.Then c=3 and n, =6, or c =4 and n, = 4, etc.
— f(n)=n+sin(n):g(n)=n,c=2,n,=1
— f(n) = n? +sqrt(n): g(n) =n2,c=2,n,=1

Limits and asymptotics

Consider the limit I i m t(n)

N—o0 g(n)

What does it say about asymptotics if this limit is zero, nonzero,
infinite?

We could say that knowing the limit is a sufficient but not
necessary condition for recognizing big-oh relationships.

It will be useful for many examples in this course.

Challenge: Use the formal definition of limit and the formal

definition of big-oh to prove these properties. W

Apply this limit property to the
following pairs of functions

N and N2

N2 + 3N + 2 and N2

N + sin(N) and N

log N and N

N log N and N?

N2 and aN (a >1)

aVNand bN (a<b)

log,N and log,N (a<b)
N!and NN

2 e =l O D SN

€

Big-Oh Style

e Give tightest bound you can

— Saying that 3N+2 € O(N3) is true, but not as useful as saying
it’s O(N) [What about ©(N3) ?]

e Simplify:
— You could say:
— 3n+2 € O(5n-3log(n) + 17)
— and it would be technically correct...
— But 3n+2 €0(n) is better.

e true or false? 3n+2 € O(n3)

Interlude

MNATIONA L
il PROCRASTINATION
SOCIETY

If you have been procrastinating on
HW1, this is your last chance.
Good luck!

BACK TO OUR ARITHMETIC THREAD

More efficient Fibonacci algorithm?

e Let X be the matrix [0 1J

11
e Then (Flj=x-(':°]
F, F

e also F, - X. R = X2. Fo P =X". Ry
Fs F, Fl, , Pt F

e How many additions and multiplications of numbers are
needed to compute the product of two 2x2 matrices?

e If n = 2, how many matrix multiplications does it take
to compute X"?
— What if n is not a power of 2?
— Implement it with a partner (details on next slide)
— Then we will analyze it
e But there is a catch! -~ N

10

identity matrix = [[1,0],[0,1]] #a constant
x = [[0,1],[1,1]1 #another constant

def matrix_multiply(a, b): #why not do loops?
return [[a[0][0]*b[0][0] + a[O]l[1]*b[1]1[O],

a[0][0]*b[O][1] + a[OJ[1]*b[1][1]1],
[a[1]1[0]*b[O][0] + a[1][1]*b[1][O],
a[1][0]*b[O][1] + a[1][1]*b[1][1]]1]

def matrix_power(m, n): #efficiently calculate m"
result = identity_matrix
Fill in the details

return result
def fib (n) :
return matrix_power(x, n)[0][1]

Test code
print ([fib(i) for i in range(11)1)

identity matrix = [[1,0],[0,1]1]
x = [[0,1],11,1]]

def matrix multiply(a, b

)
return_[[a[O][O]*b[O][O] + al[0][1]1*b[1]1([0],
a[0]1[01*pb[0][1] + al0][1]1*b[1][1]],
[al11[01*b[0][0] + all][1)*b[1][0O],
a[11[01*pb[0][1] + all]l[1]1*b[1]1[1]]]

def matrix power (m, n):

result = identity matrix

power = m

while n > 0:
ifng 2 ==

result = matrix multiply(result, power)

power = matrix multiply(power, power)
n=mn//2

return result

def fib (n)
return matrix power(x, n)[0][1]

11

Why so complicated?

e Why not just use the formula that you probably
proved by induction in CSSE 230* to calculate
F(N)?

ol
fWV) = =

9 -9

*See Weiss, exercise 7.8

For review, this proof is part of HW1.

Can we do better than O(k?)?

e |s there an algorithm for multiplying two k-bit
numbers in time that is less than O(k?)?

e Basis: A discovery of Carl Gauss (1777-1855)

— Multiplying complex numbers:

— (a + bi)(c+di) = ac — bd + (bc + ad)i

— Needs four real-number multiplications and three
additions

— But bc + ad = (a+b)(c+d) — ac —bd

— And we have already computed ac and bd when we
computed the real part of the product!

— Thus we can do the original product with 3
multiplications and 5 additions

— Additions are so much faster than multiplications that
we can essentially ignore them.

— A little savings, but not a big deal until applied
recursively!

® @
-
- -“ []
=™

12

Code for Gauss-based Algorithm

Hef multiply(x, vy, n):
mrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y"""

if n == 1:
return x * y

n_over two = n // 2 # simply shifts the bits one to the right.
two_to the n over two = 1 << n_over_two
XL, XR = x // two_to_the n over two, x % two_to the n over two

yL, yR =y // two_to_the n over two, y % two_to_the n over_ two
note that these two operations could be done by bit shifts and masking.

pl = multiply (=L, yL, n _over two)
p2 = multiply (xL+xR, yL+yR, n over two)
p3 = multiply (%R, YR, n over two)

return (pl << n) + ((p2 - p3 - pl) << n_over_two) + p3

Is this really a lot faster?

e Standard multiplication: ©(k?)

¢ Divide and conquer with Gauss trick: 6(k!->°)
— Write and solve the recurrence

e But there is a lot of additional overhead with
Gauss, so standard multiplication ;g

is faster for small values of n. 000
plot{ {(n"2, n"1.5%}, n=0..100},]

RO00
e In reality we would not let the 40001
recursion go down to the 20004

single bit level, but only down
to the number of bits that our
machine can multiply in = Se

hardware without overflow. v

0 o 4t|n5ij 80 100

13

