MA/CSSE 473
Day 02 ® o

L1
e ' O
<

Some Numeric
Algorithms and their
Analysis

Student questions on ...

e Syllabus?
e Course procedures, policies, or resources?
e Course materials?

e Homework assignments?

e Anything else?

notation: Ig n means log, n

Also, log n without a specified base
e Roll call will usually mean log, n

Leftovers

e Algorithm definition:
— Sequence of instructions (appropriate for audience)
— For solving a problem
— Unambiguous (including order)
— Can depend on input
— Terminates in a finite amount of time
e Session # = day of week
algorithm from yesterday

Levitin Algorithm picture

problem

|

algorithm

i

input —rl ‘computer” |—> output

FIGURE 1.1 Notion of algorithm

Algorithm design Process

| Understand the problem ‘

l

Decide on:
computational means,
exact vs. approximate solving,
data structure(s),
algorithm design technigue

h 4
Design an algorithm

r
4{ Prove correctness

l Analyze the algorithm

v
l Code the algorithm

-
FIGURE 1.2 Algorithm design and analysis process v

dl

Interlude

e What we become depends on what we read
after all of the professors have finished with
us. The greatest university of all is a collection
of books.

- Thomas Carlyle

Review: The Master Theorem

e The Master Theorem for Divide and Conquer

recurrence relations: For details, see Levitin
- ages 490-491
e Consider the recurrence A s

T(n) = aT(n/b) +f(n), T(1)=c, |section7.53.

where f(n) = ©(n*) and k>0, |Grimaldi's Theorem

. . 10.1 is a special case of
* The solution is the Master Theorem.

— 8(nk) if a<bk :
K . o Note that page numbers in
—O(n“logn) if a=b brackets refer to Levitin 2nd

— B(nlo8x?) if a>bk [edition

We will use this theorem often. You should Binary Search
review its proof soon (Weiss's proof is a bit Merge sort
easier than Levitin's). '

Arithmetic algorithms

e For the next few days:
— Reading: mostly review from CSSE 230 and DISCO

— In-class: Some review, but mainly arithmetic
algorithms

e Examples: Fibonacci numbers, addition, multiplication,
exponentiation, modular arithmetic, Euclid’s algorithm,
extended Euclid.

— Lots of problems to do
— some over review material
— Some over arithmetic algorithms.

Fibonacci Numbers

e F(0)=0, F(1) =1, F(n) = F(n-1) + F(n-2)
e Sequence: 0,1,1, 2,3,5, 8,13, 21, 34, ..
e Straightforward recursive algorithm:

def fibl(n):
if n==0:
return 0
if n==1:
return 1
return fibkl(n-1) + fibkl(n-2)

print fibli{&), fibl(7), fibl(8)

e Correctness is obvious. Why?

Analysis of the Recursive Algorithm

def fiblin):
if n==0:
return 0
e What do we count? sl
— For simplicity, we count return fibl(n-1) + fibl(n-2)
basic computer operations
e Let T(n) be the number of

operations required to compute F(n).

e T(0)=1,T(1) =2, T(n) =T(n-1) + T(n-2) + 3

¢ What can we conclude about the relationship between T(n)
and F(n)?

e How bad is that?

¢ How long to compute F(200) on an exaflop machine (10718
operations per second)?
— http://slashdot.org/article.pl?sid=08/02/22/040239&from=rss

print fibli{é), fibl({7), fibl(8)

A Polynomial-time algorithm?

def f£ib2i{n):
nums = [0]* (n+1)
nums[0] = 0
nums[1] = 1
for 1 in range (2, n+l):
nums[1] = num=s[i-1] + nums[i-2]

return nums[n]

Correctness is obvious because it again directly
implements the Fibonacci definition.

Analysis?

Now (if we have enough space) we can quickly
compute F(14000)

A more efficient algorithm?

Let X be the matrix [0 1J

11
Then (Flj=x-(':°]
F, F
o ()or{z)oe (27 ()
l:3 F2 I:l o I:n+1 Fl

How many additions and multiplications of numbers are
needed to compute the product of two 2x2 matrices?

If n = 2%, how many matrix multiplications does it take
to compute X"?

— What if n is not a power of 2?

— Implement it with a partner (details on next slide)

— Then we will analyze it

But there is a catch! -5

identity matrix = [[1,0],[0,1]] #a constant
x = [[0,1],[1,1]1 #another constant

def matrix_multiply(a, b): #why not do loops?
return [[a[0][0]*b[0][0] + a[O]l[1]*b[1]1[O],
a[0][0]*b[O0][1] + a[O][11*b[1][1]],
[a[1]1[0]*b[O]1[0] + a[1][1]1*b[1][0],
a[1][0]*blO]1[1] + a[1][1]*b[1]1[1]11]

def matrix_power(m, n): #efficiently calculate m"

result = identity_matrix
Fill in the details

return result
def fib (n) :
return matrix_power(x, n)[0][1]

Test code
print ([fib(i) for i in range(11)1)

