
MA/CSSE 473 Exam #2 Fall, 2014 (Day 34) Name___________________ Section: 01(9:55) __ 02(10:50)__

Resources allowed: Calculator, one 8.5 x 11 sheet of paper (one-sided, hand-written).
Resources not allowed: Anything that can communicate or has headphones/earphones.

It is possible to get so caught up in getting all of the points for one problem and spend so much time on it that you do not
get to the other problems. Don’t do that! I will be generous with partial credit if you have the main ideas. You should
first do the problems you are confident about, and then do the rest. Time is likely to be a factor on this exam.

For Instructor use:

Problem Possible Earned
1a 7

1b 4

1c 5

2a 8

2b 8

3a 6

3b 6

3c 4

4a 8

4b 8

5 16

Total 80

1.(16) This problem refers to the Optimal Binary Search Tree dynamic programming algorithm from class, where we examined a
table similar to the one below.

Input parameters. I spaced the a and b values to try to make it clear which b values are between which a values. Recall that the
a’s are the frequencies of the successful search (interior) nodes, and b’s are the frequencies of the unsuccessful (exterior) nodes.

n = 6
letters = ['A', 'E', 'I', 'O', 'U', 'Y']
a = [None, 10, 2, 5, 6, 4, 3]
b = [1, 4, 7, 8, 0, 3, 2]

Values in the output table: Recall that when the subscripts are ij, it is referring to a subtree that contains internal nodes i+1, …,
j and external nodes i, …, j. In each square, the R value is number of the root of the optimal tree, the C value is the weighted
path length of that tree, and the W value is the sum of the a and b values for all of the nodes in that subtree tree.

(a) Show the values of R35 ____________ W35__________ C35____________ (points: 2, 2, 3)

(b) (4) In the space below, show how you use the dynamic programming algorithm to get W35 and C35 with only a few additions.

(c) (5) Also in the space below the grid, draw a diagram of the optimal tree, labeling each node by its letter value.

2. (16) [This comes from Levitin 8.4.6]

(a) (8) Explain how Warshall’s algorithm can be used to determine whether a given digraph is a dag (directed acyclic graph).

 Is this an efficient algorithm for this problem? (Circle one : Yes No) Briefly explain why or why not.

(b) (8) Is it a good idea to apply Warshall’s algorithm to find the transitive closure of an undirected graph?
 (Circle one : Yes No)
 Briefly explain why or why not.

3. (16) [Levitin 7.2.5, 7.2.6]

(a) (6) Is[CSSE1] it possible that there are a pattern and text such that Horspool’s algorithm does more character comparisons than the
brute-
 force algorithm would make when searching for the same pattern in the same text? (circle one: Yes No)
 If so, give an example of such a pattern and text. If not, prove that it is not possible.

(b) (6) If Horspool’s algorithm finds a matching substring, how far should it shift the pattern to begin searching for the next
 possible match in the text?

(c) (4) In the KMP algorithm, if the first character of the pattern is compared to a character c from the text, and if c does not occur
 anywhere in the pattern, what is the maximum shift that we can do?

4 (16 points) The seven elements of a binary (min) heap are stored in positions 1-7 of an array. If the original arrangement of the
array elements is not a heap, we examined two algorithms for making it into a heap. (1) top down, repeated insert of elements 2
through N (with percolate up) to build up the heap, and (2) bottom-up heap construction, using the buildHeap (also known as fixheap)
bottom-up (with percolate down) algorithm.
If the original array is as shown below, show the results of running each of the two algorithms. Be very careful because it will be
difficult to give partial credit. If it helps you get the answers, feel free to draw the binary trees represented by the arrays.

5. (16 points) {Levitin 5.3.9] Recall that an extended binary tree (EBT) T consists of either a single external node, or a
root (internal node) and two EBTs TL and TR.

The internal path length (IPL) of an EBT T is defined as the sum of the depths of the internal nodes in T. Similarly, the
external path length (EPL) of T is defined as the sum of the depths of T’s external nodes. For example, in this EBT,

 IPL(T) = 4 (0 + 1 + 1 + 2) EPL(T) = 12. (2 + 3 + 3 + 2 + 2)

Prove by induction that for every EBT T containing N internal nodes, EPL(T) = IPL(T) + 2N.

[Suggestion: Use the recursive definition of EBT, and strong induction.]

