- Print Pages

Page 1 of 5

RAPH BY TIMOTHY ARCHIBALD

PHOTOG

viewpoints

DOI: 10.1145/1364782.1364794

Len Shustek

Interview

The ‘Art’ of Being
Donald Knuth

In this first of a two-part talk, the renowned scholar and computer scientist

reflects on the influences that set the course for his extraordinary career.

HE COMPUTER HISTORY Mu-

seum has an active program

to gather videotaped histo-

ries from people who have

done pioneering work in
this first century of the information
age. These tapes are a rich aggregation
of stories that are preserved in the col-
lection, transcribed, and made available
on the Web to researchers, students,
and anyone curious about how inven-
tion happens.

The oral histories are conversations
about people’s lives. We want to know
about their upbringing, their families,
their education, and their jobs. But
above all, we want to know how they
came to the passion and creativity that
leads to innovation.

Presented here in two installments
(concluding next month) are excerpts*
from an interview conducted by Ed-
ward Feigenbaum in March 2007 of
Donald E. Knuth, Professor Emeritus of
The Art of Computer Programming at
Stanford University. —L.S.

Don talks about his
family background.
My father was the first person among
all his ancestors who had gone to col-
lege. My mother was the first person in
all of her ancestors who had gone to a

a Oral histories are not seripted, and a transeript
of casual speech is very different from what
one would write. T have taken the liberty of
editing and reordering frecly for presentation.
For the original transcript, see http://archive.
computerhistory.org/search/oh/

e

year of school to learn how to be a typist.
My great-grandfather was a blacksmith.
There was no tradition in our family of
higher education at all. These people
were pretty smart, but they didn’t have
an academic background.

Some people know from an early
age what they want to do. Don
didn't, but he knew he wanted to
work hard.

My main interest in those days was mu-
sic. But at the college where I had been
admitted, people emphasized how easy
it was going to be there as a music ma-
jor. When I got the chance to go to Case
Institute of Technology in Ohio instead,
I was intrigued by the idea that Case
was going to make me work hard. I was

JULY 2008

VOL.51 | NO.7

scared that I was going to flunk out, but
still I was ready to work.

He initially aspired to be
a physicist, but something
happened along the way.
In my sophomore year in physics 1
had to take a required class of weld-
ing. Welding was so scary and I was
a miserable failure at it, so I decided
maybe I can’t be a physicist. On the
other hand—mathematics! In the
sophomore year for mathematicians,
they give you courses on what we now
call discrete mathematics, where you
study logic and things that are integers
instead of continuous quantities. I was
drawn to that. That was something,
somehow, that had great appeal to me.

I think that there is something
strange inside my head. It's clear that
1 have much better intuition about dis-
crete things than continuous things. In
physics, for example, I could pass the
exams and [could do the problems in
quantum mechanies, but I couldn’t in-
tuit what I was doing. But on the other
hand, in my discrete math class, these
were things that really seemed a part
of me. There’s definitely something in
how I had developed by the time I was
a teenager that made me understand
discrete objects, like zeros and ones
of course, or things that are made out
of alphabetical letters, much better
than things like Fourier transforms
or waves.

I'm visualizing the symbols. To me,
the symbols are reality, in a way. I take

COMMUNICATIONS OF THE AcM 35

http://mags.acm.org/communications/200807/templates/pageviewer print?pg=37&pm=5

9/2/2008

- Print Pages

Page 2 of 5

viewpaints

R T TR
My first program
taught me a lot about
the errors that | was
going to be making

in the future, and also
about how to find
errors. That’s sort

of the story of my

life, making errors
and trying to recover
from them. I try to
get things correct.

| probably obsess
about not making too
many mistakes.

a mathematical problem, I translate it
into formulas, and then the formulas
are the reality.

He discovers computers, and
how hard programming is.
I wrote my first program for the IBM
650 [a vacuum tube magnetic drum
computer from the 1950s], probably
in the spring of my freshman year, and
debugged it at night. The first time I
wrote the program, to find the prime
factors of a number, it was about 60 in-
structions long in machine language.
They were almost all wrong. When I
finished, it was about 120 or 130 in-
structions. I made more errors in this
program than there were lines of code!
My first program taught me a lot
about the errors that I was going to be
making in the future, and also about
how to find errors. That's sort of the
story of my life, making errors and try-
ing to recover from them. I try to get
things correct. I probably obsess about
not making too many mistakes.

At Case he learns

about early compilers

For the IT (“Internal Translator”) pro-
gram for the 650 you would punch an

36 COMMUNICATIONS OF THE ACM JULY 2008

algebraic formula on cards and feed
the cards into the machine. The lights
spin around for a few seconds and then
out come machine language instruc-
tions that set X1 equal to X2 + X4. Au-
tomatic programming coming out of
an algebraic formula! Well, this blew
my mind. I couldn’t understand how it
was possible to do this miracle. I could
understand how to write a program
to factor numbers, but I couldn’t un-
derstand how to write a program that
would convert algebra into machine
instructions.

It hadn't yet occurred to him

that the computer was a general
symbol-manipulating device?

No. That occurred to Lady [Ada] Love-
lace, but it didn’t occur to me. I'm slow
to pick up on these things, but then I
persevere.

1 got hold of the source code for IT.
I went through every line of that pro-
gram. During the summer we typically
had a family get-together on a beach on
Lake Erie where we spent time playing
cards and playing tennis. But that sum-
mer, I spent most of the time going
through this listing, trying to find out
the miracle of how IT worked. Okay,
it wasn't impossible after all. In fact,
I thought of better ways to do it than
were in that program.

The code, once I saw how it hap-
pened, was inspiring to me. Also, the
discipline of reading other people’s
programs was something good to
learn early. Throughout my life T've
had a love of reading source materi-
als—reading something that pioneers
had written and trying to understand
their thought processes, especially
when they're solving a problem I don’t
lkknow how to solve. This is the best way
for me to get my own brain past the
stumbling blocks. At Case I remem-
ber looking at papers that [Pierre de]
Fermat had written in Latin in the
17th century, in order to understand
how that great number theorist ap-
proached problems.

But it's been hard to

communicate the love of reading
historical programs.

I would say that's my major disap-
pointment with my teaching career.
1 was not able to get across to any of

my students this love for that kind of

VOL. 51 NO. 7

scholarship—reading source material.
Iwas a complete failure at passing this
on to the people that I worked with the
most closely.

He graduates from Case

and becomes a professional
compiler writer while traveling

to the California Institute of
Technology for graduate school.

1 had learned about the Burroughs 205
machine language, and it was kind of
appealing to me. So I made my own

http://mags.acm.org/communications/200807/templates/pageviewer print?pg=37&pm=5

9/2/2008

- Print Pages

Page 3 0of 5

proposal to Burroughs. I said, “I'll write
you an ALGOL compiler for $5,000. But
Ican’timplement all of ALGOL for this;
I am just one guy. Let’s leave out proce-
dures.” Well, this is a big hole in the
language! Burroughs said, “No, you've
gotto putin procedures.” I said, “Okay,
I will put in procedures, but you've got
to pay me $5,500.” That's what hap-
pened. They paid me 55,500, which was
a fairly good salary in those days. So be-
tween graduating from Case and going
to Caltech, I worked on this compiler.

Heading out to California, I drove 100
miles each day and then sat in a motel
and wrote code.

But he rejects “compiler writer”

as a career, and decides what is
important in life.

Then a startup company came to
me and said, “Don, write compil-
ers for us and we will take care of
finding computers to debug them.
Name your price.” I said, “Oh, okay,
$100,000," assuming that this was

JULY 2008

vOoL. 51 NO. 7

viewpoints

[outrageous]. The guy didn’t blink.
He agreed. I didn’t blink either. I
said, “I'm not going to do it. I just
thought that was an impossible
number.” At that point I made the
decision in my life that T wasn't go-
ing to optimize my income.

I spent a day that summer look-
ing at the mathematics of how fast
linear probing works. I got lucky, and
I solved the problem. I figured out
some math, and I kept two or three
sheets of paper with me and I typed

COMMUNICATIONS OF THE AcM 37

http://mags.acm.org/communications/200807/templates/pageviewer print?pg=37&pm=5

9/2/2008

- Print Pages

Page 4 of 5

viewpoints

it up.” This became the genesis of
my main research work, which devel-
oped not to be working on compilers,
but to be working on the analysis of
algorithms. It dawned on me that
this was just one of many algorithms
that would be important, and each
one would lead to a fascinating math-
ematical problem. This was easily a
good lifetime source of rich prob-
lems to work on.

If you ask me what makes me
most happy, number one would
be somebody saying “I learned
something from you.” Number two
would be somebody saying “I used
your software.”

At Caltech he finds a mentor,

but can’t talk to him.

I went to Caltech because they had
[strength] in combinatorics, although
their computing system was incred-
ibly arcane and terrible. Marshall
Hall was my thesis advisor. He was a
world-class mathematician, and for a
long time had done pioneering work
in combinatorics. He was my mentor.
But it was a funny thing, because [was
in such awe of him that when I was in
the same room with him I could not
think straight. I wouldn't remember
my name. I would write down what he
was saying, and then I would go back
to my office so that I could figure it
out. We couldn’t do joint research to-
gether in the same room. We could do
it back and forth.

He also was an extremely good ad-
visor, in better ways than I later was
with my students. He would keep
track of me to make sure I was not
slipping. When I was working with my
own graduate students, I was pretty
much in a mode where they would
bug me instead of me bugging them.
But he would actually write me notes
and say, “Don, why don’t you do such
and such?”

The research for his Ph.D.

thesis takes an hour.

I got a listing from a guy at Princeton
who had just computed 32 solutions
to a problem that I had been looking
at for a homework problem in my com-
binatorics class. I was riding up on the

b “Motes on Open Addressing. Unpublished memoran
dum, July 22, 1863: but see http./algoinria.fr/AofAf
Research/11-87.html

38 COMMUNICATIONS OF THE ACM JULY 2008

P P
If you ask me what
makes me most
happy, number one
would be somebody
saying “l learned
something from you.”
Number two would

be somebody saying
“l used your software.”

elevator with Olga Todd, one of our
professors, and 1 said, “Mrs. Todd, I
think I'm going to have a theorem in
an hour. I am going to psyche out the
rule that explains why there happen to
be 32 of each kind.” Sure enough, an
hour later I had seen how to get from
each solution on the first page to the
solution on the second page. I showed
this to Marshall Hall. He said, “Don,
that's your thesis. Don't worry about
this block design with A=2 business.
Write this up instead and get out of
here.” So that became my thesis. And it
is a good thing, because since then only
one more design with A=2 has been
discovered in the history of the world.
I might still be working on my thesis if
I had stuck to that problem. But I felta
little guilty that I had solved my Ph.D.
problem in one hour, so I dressed it up
with a few other chapters of stuff.

He's never had trouble finding
problems to work on.

The way I work it’s a blessing and
a curse that I don’t have difficulty
thinking of questions. I have to actively
suppress stimulation so that I'm not
working on too many things at once.
The hard thing for me is not to find
a problem, but to find a good problem.
One that will not just be isolated to
something that happens to be true, but
also will be something that will have
spin-offs, so that once you've solved
the problem, the techniques are going

to apply to many other things.

wOL. 51 | NO. 7

He starts The Art of

Computer Programming.

A man from Addison-Wesley came to
visit me and said “Don, we would like
you to write a book about how to write
compilers.” T thought about it and de-
cided “Yes, I've got this book inside of
me.” That day 1 sketched out—I still
have that sheet of tablet paper—12
chapters that I thought should be in
such a book. I told my new wife, Jill,
“I think I'm going to write a book.”
Well, we had just four months of bliss,
because the rest of our marriage hasall
been devoted to this book. We still have
had happiness, but really, wake up ev-
ery morning and I still haven’t finished
the book. So I try to organize the rest of
my life around this, as one main unify-
ing theme.

George Forsythe [founder of the
Computer Science Department at
Stanford] came down to southern Cali-
fornia for a talk, and he said, “Come
up to Stanford. How about joining
our faculty?” I said “Oh no, I can’t do
that. I just got married, and I've got to
finish this book first. I think T'll fin-
ish the book next year, and then I can
come up [and] start thinking about the
rest of my life. But Iwant to get my book
done before my son is born.” Well, John
is now 40-some years old and I'm not
done with the book.

This is really the story of my life,
because I hope to live long enough
to finish it. But I may not because it’s
turned out to be such a huge project.

1967 was a big year.
It was certainly a pivotal year in my life.
You can see in retrospect why I think
things were building up to a crisis, be-
cause I was just working at high pitch
all the time. ITwas on the editorial board
of Communications of the ACM and
Journal of the ACM—working on their
programming languages sections—
and I took the editorial duties very seri-
ously. I was a consultant to Burroughs
on innovative machines. I was con-
sumed with getting The Art of Computer
Programming done. And I was a father
and husband. I would start out every
day saying “Well, what am I going to ac-
complish today?” Then I would stay up
until I finished it.

It was time for me to make a ca-
reer decision. The question was where
should I spend the rest of my life?

http://mags.acm.org/communications/200807/templates/pageviewer print?pg=37&pm=5

9/2/2008

- Print Pages

Page 5 of 5

Should T be a mathematician? Should
I be a computer scientist? By this time
I had learned that it was actually pos-
sible to do mathematical work as a
computer scientist. I had analysis of
algorithms to do. What would be a
permanent home? My model of my
life was going to be that I was going
to make one move in my lifetime to a
place where I had tenure, and I would
stay there forever.

The crisis comes.

At Caltech, I was preparing my class lec-
tures, or typing my book. I didn’t have
time to do research. If I had a new idea,
if I said “Here’s a problem that ought to
be solved,” when was I going to solve it?
Maybe on the airplane. We were doing a
lot of experiments but I didn’t have time
to sit down at home and work out the
theory for it. T had attribute grammars
coming up in February, and these re-
ductions systems coming up in March,
and I was supposed to be grinding out
Volume Two of The Art of Computer Pro-

NN S RN
| told my new wife,
Jill, “l think I'm
going to write a book.”
Well, we had just
four months of bliss,
because the rest of
our marriage has

all been devoted to
this book. We still
have had happiness,
but really, | wake up
every morning and

| still haven't finished
the book. So | try

to organize the rest
of my life around
this, as one main
unifying theme.

gramming. 1 was scheduled in June to
lecture at a summer school in Copen-
hagen about how to parse, what's called
top-down parsing.

What happened then, in May, is I
had a massive bleeding ulcer, and I was
hospitalized. My body gave out. I was
just doing all this stuff, and it couldn’t
take it.

I learned about myself. The doc-
tor showed me his textbook that de-
scribed the typical ulcer patient: what
people call the “Type A" personality. It
described me to a T. All of the signs
were there. I was an automaton, I
think, basically. I saw a goal and I put
myself to it, and I worked on it and
pushed it through. I didn't say no to
people when they asked, “Don, can you
do this for me?” At this point I saw 1
had this problem. I shouldn’t try to do
the impossible.

He changes his lifestyle,

and moves to Stanford.

Twrote a letter to my publisher, framed
in black, saying, “I'm not going to be
able to get the manuscript of Volume
Two to you this year. I'm sorry.” I re-
signed from 10 editorial boards. No
more JACM, no more CACM. I gave up
all of the editorships in order to cut
down my workload. I started working
on Volume Two where I left off at the
time of the ulcer, but Iwould be careful
to go to sleep and keep a regular sched-
ule. Iwent to a conference in Santa Bar-
bara on combinatorial mathematics
and had three days to sit on the beach
and develop the theory of attribute
grammars, this idea of top-down and
bottom-up parsing.

In February of 1968 I finally got the
offer from Stanford. The committees
were saying, “This guy is just 30 years
old.” But when they looked at the book,
they said, “Oh, there's some credibility
here.” That helped me.

Why he writes his books with a pencil.
1 love keyboards, but my manuscripts
are always handwritten. The reason is
that I type faster than I think. There’s
a synchronization problem. I can think
of ideas at about the rate I can write
them down with a pencil. But with typ-
ing I'm going faster, so I have to sync,
and my thoughts have to start up and
stop again in a way that involves more
of my brain.

JULY 2008

viewpoints

Three volumes of “The Art” are
done, but it's time for a pause.
Volume Four is about combinatorial
algorithms. Combinatorial algorithms
were such a small topic in 1962, when
I made that Chapter Seven of my out-
line, that Johan Dahl asked me, “How
did you ever think of putting in a chap-
ter about combinatorial algorithms in
19627" 1 said, “Well, the only reason
was that it was the part I thought was
most fun.” But there was almost noth-
ing known about it at the time.

The way I look at it, this is where
you've got to use some art. You've got
to be really skillful, because one good
idea can save you six orders of magni-
tude and make your program run a mil-
lion times faster. People are coming up
with these ideas all the time. For me,
the combinatorial explosion was the
explosion of research in combinato-
rics. Not the problems exploding, but
the ideas were exploding. There’s that
much more to cover now.

It’s true that in the back of my mind
Iwas scared stiff that I can’t write Vol-
ume Four anymore. So maybe I was
waiting for it to simmer down. Some-
body did say to me once, after I solved
the problem of typesetting, maybe I
would start to look at binding or some-
thing, because I had to have some oth-
er reason [to delay]. I've certainly seen
enough graduate student procrastina-
tors in my life. Maybe I was in denial.

He solves the problem of typesetting?
Stay tuned for Part II of this interview
in the August issue and learn how
Knuth interrupted his life’s work on
The Art of Computer Programming to
create a system that makes digitally
produced books beautiful.

Edited by Len Shustek, Chair, Computer History Museum

© 2008 ACM 0001-0782/08/0700 $5.00

VOL. 51 © NO.7 | COMMUNICATIONS OF THE AcM 39

http://mags.acm.org/communications/200807/templates/pageviewer print?pg=37&pm=5

9/2/2008

- Print Pages

Page 1 of 5

OGRAPH BY TIMOTHY ARCHIBALD

PHOT!

viewpaoints

DOI:10.1145/1378704.1378715

Interview

Donald Knuth:
A Life’s Work Interrupted

In this second of a two-part interview by Edward Feigenbaum, we find Knuth, having completed three
volumes of The Art of Computer Programming, drawn to creating a system to produce books digitally.

Don switches gears and for

a while becomes what Ed
Feigenbaum calls “The World's
Greatest Programmer.”

There was a revolutionary new way to
write programs that came along in
the 1970s called “structured program-
ming.” At Stanford we were teaching
students how to write programs, but we
had never really written more than text-
book code ourselves in this style. Here
we are, full professors, telling people
how to do it, but having never done it
ourselves except in really sterile cases
with no real-world constraints. I was
itching to do it. Thank you for calling
me the world’s greatest programmer—
I was always calling myself that in my
head. Ilove programming, and soIloved
tothink that 1was doing itas well as any-
body. But the fact is the new way of pro-
gramming was something that I hadn't
had time to invest much effortin.

The motivation is his love

affair with books...

That goes very deep. My parents dis-
obeyed the conventional wisdom by
teaching me to read before I entered
kindergarten. I have a kind of strange
love affair with books going way back.
I also had this thing about the appear-
ance of books. T wanted my books to
have an appearance that other readers
would treasure, not just appreciate be-
cause there were some words in there.

For Part I of this interview, see Communications,
July 2008, page 35.

and what had happened
to his books.
Printing was done with hot lead in the
1960s, but they switched over to using
film in the 1970s. My whole book had
been completely re-typeset with a differ-
ent technology. The new fonts looked
terrible! The subscripts were in a differ-
ent style from the large letters, for exam-
ple, and the spacing was very bad. You
can look at books printed in the early
1970s and almost everything looked
atrocious in those days. I couldn’t stand
to see my books so ugly. I spent all this
time working on them, and you can't
be proud of something that looks hope-
less. I'was tearing out my hair.

At the very same time, in February
1977, Pat Winston had just come out

AUGUST 2008

VOL. 51 | NO. B

Len Shustek, Editor

with a new book on artificial intelli-
gence, and the proofs of it were being
done at I11 [Information International,
Incorporated] in Southern California.
They had a new way of typesetting us-
ing lasers. All digital, all dots of ink.
Instead of photographic images and
lenses, they were using algorithms,
bits. I looked at Winston's galley
proofs. I knew it was just bits, but they
looked gorgeous.

I canceled my plan for a sabbatical
in Chile. I wrote saying “I'm sorry; in-
stead of working on Volume 4 during
my sabbatical, I'm going to work on ty-
pography. I've got to solve this problem
of getting typesetting right. It's only
zeros and ones. I can get those dots on
the page, and I've got to write this pro-
gram.” That’s when I became an engi-
neer. I did sincerely believe that it was
only going to take me a year to do it.

But, in fact, it was to be a 10-year
project. The prototype user was
Phyllis Winkler, Don’s secretary.
Phyllis had been typing all of my tech-
nical papers. I have never seen her
equal anywhere, and I've metalot of re-
ally good technical typists. My thought
was definitely that this would be some-
thing that [would make so that Phyllis
would be able to take my handwritten
manuscripts and go from there.

The design took place in two all-
nighters. I made a draft. I sat up at the
AI lab one evening and into the early
morning hours, composing what I
thought would be the specifications

COMMUNICATIONS OF THE AcM 31

http://mags.acm.org/communications/200808/templates/pageviewer print?pg=33&pm=5

9/2/2008

- Print Pages

Page 2 of 5

viewpoints

of a language. I looked at my book and
I found excerpts from several dozen
pages where I thought it gave all the va-
riety of things I need in the book. Then
I sat down and I thought, well, if I were
Phyllis, how would 1 like to key this in?
What would be a reasonable format
that would appeal to Phyllis, and at the
same time something that as a com-
piler writer I felt I could translate into
the book? Because TeX is just another
kind of a compiler; instead of going
into machine language you're going
into words on a page. That’s a different
output language, but it’s analogous to
recognizing the constructs that appear
in the source file.

The programming turned out

to be harder than he thought.

I showed the second version of the de-
sign to two of my graduate students,
and I said, “Okay, implement this,
please, this summer. That’s your sum-
mer job.” I thought I had specified a
language. To my amazement, the stu-
dents, who were outstanding students,
did not complete it. They had a system
that was able to do only about three
lines of TeX. I thought, “My goodness,
what's going on? I thought these were
good students.” Later 1 changed my
attitude, saying, “Boy, they accom-
plished a miracle.” Because going
from my specification, which I thought
was complete, they really had an im-
possible task, and they had succeeded
wonderfully with it. These guys were
actually doing great work, but I was
amazed that they couldn’t do what I
thought was just sort of a routine task.
Then I became a programmer in ear-
nest, I had to do it.

This experience led to general
observations about programming
and specifications.

When you're doing programming, you
have to explain something to a com-
puter, which is dumb. When you're
writing a document for a human being
to understand, the human being will
look at it and nod his head and say,
“Yeah, this makes sense.” But there
are all kinds of ambiguities and vague-
ness that you don’t realize until you
try to put it into a computer. Then all
of a sudden, almost every five minutes
as you're writing the code, a question
comes up that wasn’t addressed in the

32 COMMUNICATIONS OF THE ACM AUGUST 2008

specification. “What if this combina-
tion occurs?” It just didn't occur to
the person writing the design specifi-
cation. When you're faced with doing
the implementation, a person who
has been delegated the job of working
from a design would have to say, “Well,
hmm, I don't know what the designer
meant by this.”

It’s so hard to do the design unless
you're faced with the low-level aspects
of it, explaining it to a machine in-
stead of to another person. I think it
was George Forsythe who said, “People
have said you don't understand some-
thing until you've taught it in a class.
The truth is you don’t really under-
stand something until you've taught it
to a computer, until you've been able
to program it.” At this level, program-
ming was absolutely important.

When I got to actually program-
ming TeX, I had to also organize it so
thatit could handle lots of text. I had to
develop a new data structure in order
to be able to do the paragraph coming
in text and enter it in an efficient way.
1 had to introduce ideas called “glue,”
and “penalties,” and figure out how
that glue should disappear at bound-

A R G PR R R RGP
“I wake up in the
morning with
anidea, and it
makes my day

to think of adding
a couple of lines
to my program.

It gives me areal
high. It must be
the way poets
feel, or musicians,
or painters.
Programming
does that for me.”

VOL. 51 | NO. B

aries in certain cases and not in oth-
ers. All these things would never have
occurred to me unless [was writing the
program.

Edsger Dijkstra gave this wonderful
Turing lecture early in the 1970s called
“The Humble Programmer.” One of
the points he made in his talk was that
when they asked him in Holland what
his job title was, he said, “Program-
mer,"” and they said, “No, that's not a
job title. You can’t do that; program-
mers are just coders. They're people
who are assigned like scribes were in
the days when you needed somebody
to write a document in the Middle
Ages.” Dijkstra said no, he was proud
to be a programmer. Unfortunately, he
changed his attitude completely, and I
think he wrote his last computer pro-
gram in the 1980s.

I checked the other day and found I
wrote 35 programs in January, and 28
or 29 programs in February. These are
small programs, but I have a compul-
sion. I love to write programs. I think
of a question that I want to answer, or
I have part of my book where I want
to present something, but I can’t just
present it by reading about it in a book.
As 1 code it, it all becomes clear in my
head. The fact that I have to translate
my knowledge of this method into
something that the machine is going
to understand forces me to make that
knowledge crystal-clear in my head.
Then I can explain it to somebody
else infinitely better. The exposition
is always better if I've implemented it,
even though it's going to take me more
time.

It didn’t occur to me at the time
that I just had to program in order to
be a happy man. I didn’t find my other
roles distasteful, except for fundrais-
ing. I enjoyed every aspect of being a
professor except dealing with propos-
als, which was a necessary evil. But I
wake up in the morning with an idea,
and it makes my day to think of add-
ing a couple of lines to my program. It
gives me a real high. It must be the way
poets feel, or musicians, or painters.
Programming does that for me.

The TeX project led to

METAFONT for the design of fonts.
But it also wasn't smooth sailing.
Graphic designers are about the nie-
est people I've ever met in my life. In

http://mags.acm.org/communications/200808/templates/pageviewer print?pg=33&pm=5

9/2/2008

- Print Pages Page 3 0of 5
viewpoints
r—
“l found that

writing software
was much more
difficult than
anything else | had
done in my life. | had
to keep so many
things in my head

at once. Il couldn’t
just put it down

and start something
else. It really took
over my life during
this period.”

the spring of 1977, T could be found
mostly in the Stanford Library reading
about the history of letter forms. Be-
fore I went to China that summer I had
drafted the letters for A to Z.

One of the greatest disappoint-
ments in my whole life was the day I
received in the mail the new edition of
The Art of Computer Programming Vol-
ume 2, which was typeset with my fonts
and which was supposed to be the
crowning moment of my life, having
succeeded with the TeX project. I think
it was 1981, and I had the best typeset-
ting equipment, and I had written a
program for the 8-bit microprocessor
inside. It had 5,000 dots-per-inch, and
all the proofs coming out looked good
on this machine. I went over to Addi-
son-Wesley, who had typeset it. There
was the book, and it was in the familiar
beige covers. 1 opened the book up and
I'm thinking, “Oh, this is going to be
a nice moment.” I had Volume 2, first
edition. I had Volume 2, second edi-
tion. They were supposed to look the
same. Everything I had known up to
that point was that they would look the
same. All the measurements seemed
to agree. But a lot of distortion goes
2 on, and our optic nerves aren't linear.
2 All kinds of things were happening. I

AUGUST 2008 | VOL. 51 | NO.8 | COMMUNICATIONS OF THE ACM 33

http://mags.acm.org/communications/200808/templates/pageviewer print?pg=33&pm=5

9/2/2008

- Print Pages

Page 4 of 5

viewpoints

burned with disappointment. I really
felt a hot flash, I was so upset. It had to
look right, and it didn’t, at that time.
I'm happy to say that I open my books
now and I like what I see. Even though
they don’'t match the 1968 book ex-
actly, the way they differ are pleasing
to me.

What it was like writing TeX.
Structured programming gave me a
different feeling from programming
the old way—a feeling of confidence
that [didn’t have to debug something
immediately as I wrote it. Even more
important, 1 didn't have to mock-up
the unwritten parts of the program. I
didn’t have to do fast prototyping or
something like that, because when you
use structured programming method-
ology you have more confidence that
it's going to be right, that you don’t
have to try it out first. In fact, Twrote all
of the code for TeX over a period of sev-
en months, before I even typed itintoa
computer. It wasn’t until March 1978
that I spent three weeks debugging ev-
erything I had written up to that time.
I found that writing software was
much more difficult than anything
else T had done in my life. I had to keep
so many things in my head at once. I
couldn’t just put it down and start
something else. It really took over my
life during this period. T used to think
there were different kinds of tasks:
writing a paper, writing a book, teach-
ing a class, things like that. T could
juggle all of those simultaneously. But
software was an order of magnitude
harder.Icouldn’tdothatand still teach
a good Stanford class. The other parts
of my life were largely on hold, includ-
ing The Art of Computer Programming.
My life was pretty much typography.

TeX leads to a new way

of programming.

Literate programming, in my mind,
was the greatest spin-off of the TeX
project.Ilearned anewwayto program.
I love programming, but I really love
literate programming. The idea of lit-
erate programming is that I'm writing
a program for a human being to read
rather than a computer to read. It's
still a program and it's still doing the
stuff, but I'm a teacher to a person. I'm
addressing my program to a thinking
being, but I'm also being exact enough

34 COMMUNICATIONS OF THE ACM AUGUST 2008

so that a computer can understand it
as well. Now I can’t imagine trying to
write a program any other way.

As I'm writing The Art of Computer
Programming, 1 realized the key to
good exposition is to say everything
twice: informally and formally. The
reader gets to lodge it in his brain in
two different ways, and they reinforce
each other. In writing a computer pro-
gram, it's also natural to say everything
in the program twice. You say itin Eng-
lish, what the goals of this part of the
program are, but then you say it in your
computer language. You alternate be-
tween the informal and the formal. Lit-
erate programming enforces this idea.

In the comments you also explain
what doesn’t work, or any subtleties.
You can say, “Now note the following.
Here is the tricky part in line 5, and
it works because of this.” You can ex-
plain all of the things that a maintainer
needs to know. All this goes in as part
of the literate program, and makes
the program easier to debug, easier to
maintain, and better in quality.

After TeX, Don gets to go back

to mathematics.

We finished the TeX project; the cli-
max was in 1986. After a sabbatical in
Boston I came back to Stanford and
plunged into what I consider my main
life's work: analysis of algorithms.
That's a very mathematical thing,
and so instead of having font design
visitors to my project, 1 had great al-
gorithmic analysts visiting my project.
I started working on some powerful
mathematical approaches to analysis
of algorithms that were unheard of in
the 1960s when I started the field. Here

EE
“Atage 551

became ‘Professor
Emeritus of The

Art of Computer
Programming,’

with a capital ‘T’

| love that title.”

VOL. 51 | NO. 8

I am in math mode, and thriving on
the beauties of this subject.

One of the problems out there that
was fascinating is the study of random
graphs. Graphs are one of the main fo-
cuses of Volume 4, all the combinato-
rial algorithms, because they're ubig-
uitous in applications.

Frustrated with the rate of
progress, he “retires” to devote
himself to “The Art.”
I wasn't really as happy as I let on. 1
mean, I was certainly enjoying the re-
search Iwas doing, but Iwasn't making
any progress atall on Volume 4. I'm do-
ing this work on random graphs, and
I'm learning all of these things. But at
the end of the year, how much more
had been done? I've still got 11 feet of
preprints stacked up in my closet that
I haven't touched, because I had to put
that all on hold for the TeX project. I
figured the thing that I'm going to be
able to do best for the world is finish-
ing The Art of Computer Programming.
The only way to do it was to stop be-
ing a professor full time. I really had
to be a writer full time. So, at age 55 I
became “Professor Emeritus of The
Art of Computer Programming,” with
a capital “T.” I love that title.

Don is a master at straddling
the path between engineering
and science.
I always thought that the best way to
sum up my professional work is that it
has been an almost equal mix of theory
and practice. The theory I do gives me
the vocabulary and the ways to do prac-
tical things that can make giant steps
instead of small steps when I'm doing
a practical problem. The practice 1 do
makes me able to consider better and
more robust theories, theories that
are richer than if they're just purely
inspired by other theories. There's
this symbiotic relationship between
those things. At least four times in my
life when I was asked to give a kind of
philosophical talk about the way I look
at my professional work, the title was
“Theory and Practice.” My main mes-
sage to the theorists is, “Your life is
only half there unless you also get nur-
tured by practical work.”

Softwareis hard. My experience with
TeX taught me to have much more ad-
miration for colleagues that are devot-

http://mags.acm.org/communications/200808/templates/pageviewer print?pg=33&pm=5

9/2/2008

- Print Pages

Page 5 of 5

ing most of their life to software than I
had previously done, because I didn't
realize how much more bandwidth of
my brain was being taken up by that
work than it was when I was doing just
theoretical work.

Computers aren’t everything:
religion is part of his life, too.

I think computer science is wonder-
ful, but it's not everything, Through-
out my life I've been in a very loving
religious community. 1 appreciate
Luther as a theologian who said you
don’t have to close your mind. You
keep questioning. You never know the
answer. You don’t just blindly believe
something.

I'm a scientist, but on Sundays I
would study with other people of our
church on aspects of the Bible. I got
this strange idea that maybe 1 could
study the Bible the way a scientist
would do it, by using random sam-
pling. The rule I decided on was we
were going to study Chapter 3, Verse
16 of every book of the Bible.

This idea of sampling turned out
to be a good time-efficient way to get
into a complicated subject. I actually
got too confident that I knew much
more than I actually had any right to,
because I'm only studying less than
1/500th of the Bible. But a classical
definition of a liberal education is that
you know everything about something
and something about everything.”

On his working style...

I enjoy working with collaborators,
but I don't think they enjoy working
with me, because I'm very unreliable. I
march to my own drummer, and I can’t
be counted on to meet deadlines be-
cause | always underestimate things.
I'm not a great coworker, and I'm very
bad at delegating.

I have no good way to work with
somebody else on tasks that I can do
myself. It'’s a huge skill that I lack.
With the TeX project I think it was
important, however, that I didn’t del-
egate the writing of the code. I needed
to be the programmer on the first-gen-
eration project, and I needed to write
the manual, too. If T delegated that,
I wouldn’t have realized some parts

a See 3:16 Bible Texts Illuminated, by Donald
Knuth, A-R Editions, 1991.

Lo e e
“I'm worried about
the present state

of programming.
Programmers now
are ... supposed to
assemble reusable
code that somebody
else has written...
Where’s the funin
that? Where’'s the
beauty in that?”

of it are impossible to explain. I just
changed them as [wrote the manual.

What is the future

of programming?
A program I read when Twas in my first
year of programming was the SOAP II
assembler by Stan Poleyat IBM. Itwas a
symphony. It was smooth. Every line of
code did two things. It was like seeinga
grand master playing chess. That’s the
first time I got a turn-on saying, “You
can write a beautiful program.” It had
an important effect on my life.

I'm worried about the present state
of programming. Programmers now
are supposed to mostly just use librar-
ies. Programmers aren't allowed to do
their own thing from scratch anymore.
They're supposed to assemble reus-
able code that somebody else has writ-
ten. There's a bunch of things on the
menu and you choose from these and
put them together. Where's the fun in
that? Where's the beauty in that? We
have to figure out a way we can make
programming interesting for the next
generation of programmers.

What about the future of science
and engineering generally?
Knowledge in the world is exploding.
Up until this point we had subjects,
and a person would identify them-
selves with what I call the vertices of a
graph. One vertex would be mathemat-
ics. Another vertex would be biology.

AUGUST 2008

VOL. 51 | NOQ. 8

viewpoints

Another vertex would be computer sci-
ence,anewone. There would be a phys-
ics vertex, and so on. People identified
themselves as vertices, because these
were the specialties. You could live in
that vertex, and you would be able to
understand most of the lectures that
were given by your colleagues.

Knowledge is growing to the point
where nobody can say they know all of
mathematics, certainly. But there’s so
much interdisciplinary work now. We
see that a mathematician can study
the printing industry, and some of the
ideas of dynamic programming ap-
ply to book publishing. Wow! There
are interactions galore wherever you
look. My model of the future is that
people won't identify themselves with
vertices, but rather with edges—with
the connections between. Each per-
son is a bridge between two other ar-
eas, and they identify themselves by
the two subspecialties that they have
a talent for.

Finally, we always ask
for life advice.
When I was working on typography, it
wasn’t fashionable for a computer sci-
ence professor to do typography, but I
thought it was important and a beauti-
ful subject. Other people later told me
that they're so glad I put a few years
into it, because it made it academically
respectable, and now they could work
on it themselves. They were afraid
to do it themselves. When my books
came out, they weren’t copies of any
other books. They always were some-
thing that hadn’t been fashionable to
do, but they corresponded to my own
perception of what ought to be done.
Don't just do trendy stuff. If some-
thing is really popular, I tend to think:
back off. I tell myself and my students
to go with your own aesthetics, what
you think is important. Don’t do what
you think other people think you want
to do, but what you really want to do
yourself. That's been a guiding heuris-
tic for me all the way through.

And it should for the rest of us.
Thank you, Don.

Edited by Len Shustek, Chair, Computer History Museum,
Mountain View, CA.

© 2008 ACM 0001-0782/08/0800 $5.00

COMMUNICATIONS OF THE ACM 35

http://mags.acm.org/communications/200808/templates/pageviewer print?pg=33&pm=5

9/2/2008

	CACM_Knuth_Interview_PartOne
	CACM_Knuth_Interview_PartTwo

