
Some major arithmetic ideas and results from MA/CSSE 473\ 

1. Adding two k-bit integers:  Θ(k) 

2. Multiplication of two k-bit integers:    

a. Standard approach:  Θ(k
2
) 

b. Simple divide and conquer (a+bi)(c+di)   Θ(k
2
) 

c. Gauss-based divide-and conquer (a+b)(c+d) = (ac + bd) +[ (a +b)(c+d) – ac – bd]I   Θ(k
log[2]3

) 

3. Division of  two k-bit integers:  Θ(k
2
) 

4. Modular Arithmetic basics:   a ≡ b (mod N) if and only if N divides (a-b).  I.e. ∃k ( (b-a) = kN. 

a. Substitution rule 

i.    If x ≡ x' (mod N) and y ≡ y' (mod N), 

   then x + y ≡ x' + y' (mod N), and xy ≡ x'y' (mod N) 

b. Associativity 

i.    x + (y + z) ≡ (x + y) + z (mod N) 

c. Commutativity 

i.    xy ≡ yx (mod N) 

d. Distributivity 

i.    x(y+z) ≡ xy +yz (mod N) 

e. Modular addition run time Θ(k) 

f. Modular multiplication run time Θ(k
2
) 

g. Integer division algorithm (gives quotient and remainder)  Θ(k
2
) 

h. ModExp calculates x
y
 (mod N)  Θ(k

3
) 

i. Euclid algorithm:  gcd(a, b) = gcd(b, a%b)   

j. Extended Euclid finds gcd d and x, y such that d = a x + b y. 

k. Modular inverse.  X such that ax ≡ 1 (mod N).  Exisist iff gcd(a, N) = 1. 

i. Once we find x, y such that 1 = a x + b N, then a
-1

 ≡ x (mod N)   

l. Modular division  a/b ≡ a b
-1 

(mod N) 

5. Fermat's little theorem:  If p is prime and p does not divide a, a
p-1 

≡ 1 (mod p) 

6. This test can show a number composite but cannot show it to be prime. 

7. If a is relatively prime to N and if a fails the Fermat test  (a
p-1

 is not congruent to 1 mod N), then at 

least half of 1, 2, …, N-1 fail the test. 

8. A Carmichael number is a composite integer N for which each of 1, 2, …N-1 passes the Fermat test. 

9. Miller-Rabin test.  Write N-1 as 2
t
u and Examine powers of a:  u, u

2
, u

4
, … u

t
 looking for a nontrivial 

square root of 1.  If we find one (or if the final power is not 1, so a fails the Fermat test) , N is 

composite. 

10. RSA encryption:  Let p and q be  primes, N=pq.  Let we be any number with gcd(e, N) = 1. 

a. The public encryption key is the pair (N, e) 

b. Encryption: m' =  m
e
 (mod N) 

c. Decryption key d is the inverse of e (mod (p-1)(q-1)).   

d. Decryption: (m')
d
  ≡ m (mod N).  i.e. (M

e
)

d
 ≡ m (mod N).   

e. Principle.  It's hard to guess d if you don't know p and q.  Factoring is hard. 


