
Some major arithmetic ideas and results from MA/CSSE 473\

1. Adding two k-bit integers: Θ(k)

2. Multiplication of two k-bit integers:

a. Standard approach: Θ(k
2
)

b. Simple divide and conquer (a+bi)(c+di) Θ(k
2
)

c. Gauss-based divide-and conquer (a+b)(c+d) = (ac + bd) +[(a +b)(c+d) – ac – bd]I Θ(k
log[2]3

)

3. Division of two k-bit integers: Θ(k
2
)

4. Modular Arithmetic basics: a ≡ b (mod N) if and only if N divides (a-b). I.e. ∃k ((b-a) = kN.

a. Substitution rule

i. If x ≡ x' (mod N) and y ≡ y' (mod N),

 then x + y ≡ x' + y' (mod N), and xy ≡ x'y' (mod N)

b. Associativity

i. x + (y + z) ≡ (x + y) + z (mod N)

c. Commutativity

i. xy ≡ yx (mod N)

d. Distributivity

i. x(y+z) ≡ xy +yz (mod N)

e. Modular addition run time Θ(k)

f. Modular multiplication run time Θ(k
2
)

g. Integer division algorithm (gives quotient and remainder) Θ(k
2
)

h. ModExp calculates x
y
 (mod N) Θ(k

3
)

i. Euclid algorithm: gcd(a, b) = gcd(b, a%b)

j. Extended Euclid finds gcd d and x, y such that d = a x + b y.

k. Modular inverse. X such that ax ≡ 1 (mod N). Exisist iff gcd(a, N) = 1.

i. Once we find x, y such that 1 = a x + b N, then a
-1

 ≡ x (mod N)

l. Modular division a/b ≡ a b
-1

(mod N)

5. Fermat's little theorem: If p is prime and p does not divide a, a
p-1

≡ 1 (mod p)

6. This test can show a number composite but cannot show it to be prime.

7. If a is relatively prime to N and if a fails the Fermat test (a
p-1

 is not congruent to 1 mod N), then at

least half of 1, 2, …, N-1 fail the test.

8. A Carmichael number is a composite integer N for which each of 1, 2, …N-1 passes the Fermat test.

9. Miller-Rabin test. Write N-1 as 2
t
u and Examine powers of a: u, u

2
, u

4
, … u

t
 looking for a nontrivial

square root of 1. If we find one (or if the final power is not 1, so a fails the Fermat test) , N is

composite.

10. RSA encryption: Let p and q be primes, N=pq. Let we be any number with gcd(e, N) = 1.

a. The public encryption key is the pair (N, e)

b. Encryption: m' = m
e
 (mod N)

c. Decryption key d is the inverse of e (mod (p-1)(q-1)).

d. Decryption: (m')
d
 ≡ m (mod N). i.e. (M

e
)

d
 ≡ m (mod N).

e. Principle. It's hard to guess d if you don't know p and q. Factoring is hard.

