
C:\SVN\473\Public\InClassCode\Day22-HeapSort\HeapSort.py Monday, October 13, 2014 9:22 PM

'''
Created on Oct 13, 2010. Last modified Oct 13, 2014.

@author: anderson

Annotated Heapsort program. Basic ideas:
1. Start with items to be sorted in positions 1 through n of a list a[].
2. Arrange those items into a max-heap, so that a[1] is the largest element.
3. for i = n downto 2:
 a. exchange a[1] and a[i]
 b. Percolate down a[1] so that a[1] .. a[i-1] again form a heap.
'''

import random

This uses a max heap

swapcount = 0

def swap(a, i, j):
' excahange the values of a[i] and a[j]'
global swapcount
swapcount += 1
a[i], a[j] = a[j], a[i]

def percolateDown(a,i, n):
"""Within the n elements of A to be "re-heapified", the two subtrees of A[i]

 are already maxheaps. Repeatedly exchange the element currently in A[i] with
 the largest of its children until the tree whose root is a[i] is a max heap. """

current = i # root position for subtree we are heapifying
lastNodeWithChild = n//2 # if a node number is higher than this, it is a leaf.
while current <= lastNodeWithChild:

max = current
if a[max] < a[2*current]: # if it is larger than its left child.

max = 2*current
if 2*current < n and a[max] < a[2*current+1]: # But if there is a right child,

max = 2*current + 1 # right child may be larger than either
if max == current:

break # larger than its children, so we are done.
swap(a, current, max) # otherwise, exchange, move down tree, and check again.
current = max

def percolateUp(a,n):
''' Assume that elements 1 through n-1 are a heap; add element n and "re-heapify". '''
compare to parent and swap until not larger than parent.
current = n
while current > 1: # or until this value is in the root.

if a[current//2] >= a[current]:
break

swap(a, current, current//2)
current //= 2

The next two functions do the same thing; each takes an unordered
array and turns it into a max-heap. In the homework, you will show

-1-

C:\SVN\473\Public\InClassCode\Day22-HeapSort\HeapSort.py Monday, October 13, 2014 9:22 PM

that the second is much more efficient than the first.
So this first one is not actually called in this code.
def heapifyByInsert(a, n):

""" Repeatedly insert elements into the heap.
 Worst case number of element exchanges:
 sum of depths of nodes."""

for i in range(2, n+1):
percolateUp(a, i)

def buildHeap(a, n):
""" Each time through the loop, each of node i's two

 subtreees is already a heap.
 Find the correct position to move the root down to
 in order to "reheapify."
 Worst case number of element exchanges:
 sum of heights of nodes."""

for i in range (n//2, 0, -1):
percolateDown(a, i, n)

def heapSort(a, n):
heapifyByInsert(a, n)
for i in range(n, 1, -1):

swap(a, 1, i)
percolateDown(a, 1, i-1)

Some code to test heapSort by ranndomly generating an array and sorting it.
Counts the number of exchanges. To compare the two heap-building approaches, try substituting
heapifyByInsert for buildHeap in the heapSort code.
n = 500
source = list(range(n))
a = [0]
for i in range(n):

next = random.choice(source)
a += [next]
source.remove(next)

print("unsorted array:", a[1:])

heapSort(a, n)
print("sorted array: ", a[1:])
print ("number of exchanges: ", swapcount)

-2-

