473 HW 5 Levitin Problems

Problem 1: 3.2.3 (also see details in assighment document]

. wess L Lapeni).

3. hGarfjgrer testing A ﬁrn_1 Wwanis to determine the highest floor of its n-story
g ca‘ quarters from which a gadget can fall with no impact on the gadqet'{
unctionality. The firm has two identjval gadgets to experiment with Désigﬁ

an algorithm in the best efficiency
y class you can to solve this
epeid thae tiviac:.) olve this problem.

Let N be the total number of floors, and F the number of the lowest floor on which a

gadget fails when dropped from there.

Assume that due to weight, volatility, or some other factor, there is a high cost (C) for each floor
that a gadget must be carried up. Also a cost (T) for each test to determine whether the drop
caused the gadget to fail after each drop.

First, give big-Theta worst-case running times in terms of N, C, and T for the obvious algorithm
that tries every floor in succession (that algorithm only requires one gadget). Then design and
analyze the most efficient algorithm you can.

Can you think of any flaws in this general approach to testing?

Points: (Algorithm/analysis: 2, efficient algorithm/analysis: 10, flaw: 2)

Problem 2: 3.2.4

TToT et ki LUUICHLL,

arisons that will be made hy the

pattern GANDHI in the text
THERE_IS_MORE_TO_LIFE_THAN INCREASTNG_ITS_SPEED

(Assume that the length of the text—

the search starts,)

4, Dctcrrpinc the number of character comp
brutc-force algurithm I searching for the

-itis 47 characters long—is known before

Problem 3: 3.2.6

6. Give an example of a text of lengthn anda p
aworst-case input for the brute-force string-matching
many character comparisons will be madc for sucli Iﬁpur?

Problem 4: 3.3.4 [3.3.3]

e = eI P FICEI CPI T O

3. a. There are several alternative ways to define a distance between two points
Py = (x1, y1) and P, = (x3, y») in the Cartesian plane. In particular, the
so-called Manhartan distance is defined as

dyu(Py, Py =|x1 = x3] + |y — y2l.
Prove that) satisfics the following axioms which every distance function
must satisfy:
i. dy (P, P,) = 0 for any two points P; and P,. and dy(Py, P,) =0if and
only if Py = Py;
ii. dy(Py, Py) = dy (P>, Py):
iii. dyg(Py. Py) < dy(Py. P3)+dy(Ps, P,) forany Py, Py, and Ps.

b. Sketchall the pointsin the x, y coordinate plane whose Manhattan distance
to the origin (0,0) is equal to 1. Do the same for the Cuclidean distance.

c. Trge or false: A solution to the closest-pair problem does not depend on
which of the two metrics—d;: (Euclidean) or d,, (Manhattan)—is used?

attern of length m that constitutes
algorithm. Exactly how

Clarifications: (b) You can sketch
or simply list them.

(c) By "a solution", they mean "an
algorithm to solve the problem".
Obviously Manhattan distance
may give different nearest points
than Euclidean distance. But here
is the question you must answer:
is the closest point algorithm itself
the same for both?

Points: (a:5, b:3, c:2).

Problem 5: 3.3.7 [3.3.5]

5. The closest-pair problem can be posed on the k-dimensional space in which the
Euclidean distance between two points P/ = (_r; m‘i_) and P" = (x ;’ ,,,,,, x;.’)
is defined as

k
d(P', P"y= | D (& —x)2.
N =1
What will be the efficiency class of the brute-force algorithm for the k-
dimensional closest-pair problem?

Problem 6: 3.3.10 [3.3.8]

8. What modification needs to be made in the brute-force algorithm for the
convex-hull problem to handle more than two points on the same straight

line?

Problem 7: 3.4.1 (traveling salesman)

1. a. Assuming that each tour can be generated in constant time, what will be
the efficiency class of the exhaustive-search algorithm outlined in the text
for the traveling salesman problem?

b. If this algorithm is programmed on a computer that makes 1 billion ad-
ditions per second, estimate the maximum number of cities for which the
problem can be solved in

. one hour.

ii. 24-hours.

iii. one year.

I told students that you can use either the 2rd
or 3rd edition of the textbook. One says “one
billion“ additions per second”; the other says
“ten billion additions per second”. Use “one
billion additions per second” when you do
this problem.

iv. one century.

Problem 8: 3.4.5

5. Give an example of the assignment problem whose optimal solution does not

include the smallest element of its cost matrix.

Problem 9: 3.4.6

6. Consider the partition problem: given n positive integers, partition them into
two disjoint subsets with the same sum of their elements. (Of course, the prob-
lem does not always have a solution.) Design an exhaustive-search algorithm
for this problem. Try to minimize the number of subsets the algorithm needs

to generate.

There is only so much a brute force algorithm can do to make this efficient.
Mainly, try to avoid checking duplicate subsets or subsets that cannot possibly be a solution.

Problem 10: 3.4.9 [not in 2" edition]

The real question in each case is

Eight-gueens problem Consider the classic puzzle of placing eight queens
on an 8§ x 8 chessboard so that no two queens are 1n the same row or 1n
the same column or on the same diagonal. How many ways are there so
that

a. no two queens are on the same square?
b. no two queens are in the same row?

c. no two queens are 1n the same row or 1n the same column?

Alzo estimate how long 1t would take to find all the solutions to the prob-
lem by exhaustive search based on each of these approaches on a computer
capable of checking 10 billion positions per second.

“if we make only the given
restrictions, then check each
possibility to see if it is a solution,
how many possibilities will we
need to check?” If we made no
restrictions at all (not even the
restriction that multiple queens
cannot occupy the same square),
then there would be 648
placements to check. How many
for each of the given cases?

