
MA/CSSE 473 Day 27 Dynamic programming intro

- 1. In what situation can dynamic program speed up the runtime of an algorithm?
- 2. How does Dynamic Programming improve the performance of Fibonacci computation (compared to just using the recursive formula?
- 3. What is the recursive formula used by the dynamic programming algorithm for binomial coefficients?
- 4. Transitive closure of a directed graph
 - a. How to compute it using matrix multiplication
 - b. Number of integer multiplications required for this approach.
 - c. Warshall's algorithm
 - i. Number the vertices: v_1, v_2, \ldots, v_n
 - ii. Graph represented by a boolean adjacency matrix M.
 - iii. Numbering is arbitrary, but is fixed throughout the algorithm.
 - iv. Define the boolean matrix $R^{(k)}$:
 - v. $R^{(k)}[i][j]$ is 1 iff there is a path from v_i to v_j in the directed graph
 - that has the form $v_i\!=\!w_0 \to w_1 \to \ldots \to w_s\!=\!v_j,$ where 1. $s\!>\!=\!1,$ and
 - 2. for all t = 1, ..., s-1, the w_t is v_m for some $m \le k$
 - i.e, none of the intermediate vertices are numbered higher than k
 - vi. What is $R^{(0)}$?
 - vii. Note that the transitive closure T is $R^{(n)}$
 - viii.

ix. A quicker way to calculate $R^{(k)}$ from $R^{(k-1)}$

- 5. Optimal linked list order (if we know the probability of search for each item)
 - a. Item x_i in list has probability p_i. What is expected number of probes for search?
 - b. Example: $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{4}$, ..., $p_{n-1} = \frac{1}{2^{n-1}}$, $p_n = \frac{1}{2^{n-1}}$ Expected # of probes for best case, worst case:
 - c. What if we do not know the probabilities?
- 6. Optimal binary search tree (for case where we know the probabilities (or frequencies)
 - a. For today, we only deal with successful searches.
 - b. If $P(x_i) = p_i$, what is the expected number of probes for a search?
 - c. Guiding principle for optimization
- 7. How many different BSTs with n nodes (containing numbers 1, 2, ..., n)?

8. Example: consider only successful searches, with probabilities A(0.2), B(0.3), C(0.1), D(0.4).

worst

opposite

greedy

better

best?