MA/CSSE 473
Day 24 ® o

o ’Q ~

Student questions
Space-time tradeoff

Hash tables review

We did not get to them in other sections

THINGS WE DID LAST TIME IN
SECTION 1

Horner's Rule

It involves a representation change.

Instead of a x" +a, x"1+... +a;x+a, which
requires a lot of multiplications, we write

(..(@ax+a,)x+..+a;)x+a,

code on next slide

Horner's Rule Code

e This is clearly ©(n).

def polyEvalHorner (p, X):
"rrop is a list representing the coefficients.
pli] is the coefficient of x"i.
¥ is where we are to evaluate p. """
sum = 0
for 1 in range{lenip)-1, -1, -1):
sum = sum * ¥ + pl[i]

return sum

evaluate 4x43 + 3x"2 + 2x + 1 at x=2
print polyvEvalHorner([l, 2, 3, 41, 2}

Problem Reduction

e Express an instance of a problem in terms of an
instance of another problem that we already
know how to solve.

e There needs to be a one-to-one mapping between
problems in the original domain and problems in
the new domain.

e Example: In quickhull, we reduced the problem of
determining whether a point is to the left of a line
to the problem of computing a simple 3x3
determinant.

e Example: Moldy chocolate problem in HW 9.
The big question: What problem to reduce it to? , .
(You'll answer that one in the homework) == e

Least Common Multiple

e Let m and n be integers. Find their LCM.
e Factoring is hard.

e But we can reduce the LCM problem to the
GCD problem, and then use Euclid's algorithm.

e Note that lcm(m,n)-gcd(m,n) = m-n
e This makes it easy to find lcm(m,n)

Paths and Adjacency Matrices

e We can count paths from A to B in a graph by
looking at powers of the graph's adjacency
matrix.

=]

a

[=x
[I S o R . R i]
e =
O - o o0oo
o e N e B e Y
- 00 = = o
0O - 00 = @
[I S o R . R i]
- = O = W .
- 00 = = =
- = = OO0
- W = O = oo
Py —= = —= — @

For this example, | used the applet from
http://oneweb.utc.edu/~Christopher-Mawata/petersen2/lesson7.htm,

which is no longer accessible ° e

Sometimes using a little more space saves a lot of
time

SPACE-TIME TRADEOFFS

Space vs time tradeoffs

e Often we can find a faster algorithm if we are
willing to use additional space.

e Give some examples
e Examples:

Space vs time tradeoffs

e Often we can find a faster algorithm if we are willing to
use additional space.

e Give some examples (quiz question)

e Examples:

— Binary heap vs simple sorted array. Uses one extra array
position

— Merge sort

— Sorting by counting

— Radix sort and Bucket Sort

— Anagram finder

— Binary Search Tree (extra space for the pointers)
— AVL Tree (extra space for the balance code)

A Quick Review

HASH TABLE IMPLEMENTATION

Hash Table Review

Section 7.4 of Levitin
Excellent detailed reference: Weiss Chapter 20.
Coveredin 230

— Both versions of the course
— Alink to one version: http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides/17-Graphs-
HashTables.pdf
Three questions on today's handout guide you through a
quick review; the above link may be helpful. Do it with
two other students. 20 minutes.

Then we will prove a property of quadratic probing that is
described in 230 but seldom proved there.

If you don't understand the effects of clustering, you might find the -

animation that is linked from this page to be especially helpful. T
. http://www.cs.auckland.ac.nz/software/AlgAnim/hash tables.html v

Hashing Review

Discuss the following questions in a group of three students

e What problem do we try to solve by hashing?
e What is the general idea of how hashing works?

e Why does it fit into Chapter 7 (space-time
tradeoffs)?

e What are the main issues to be addressed when
discussing hashing implementation?

e How to choose between a hash table and a
binary search tree?

Terminology and analysis

If any of this terminology is unfamiliar, you should
look it up

e collision
load factor (M)
perfect hash function

open addressing
— linear probing

— cluster

— quadratic probing
— rehashing

separate chaining]_— .._.__(_.I o

Some Hashing Details ...

e Can be found on this page:

e http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides
/17-Graphs-HashTables.pdf

e Similar to Weiss's presentation

e They are linked from here in case you didn't
"get it" the first time in CSSE230.

e We will not go over all of them in detail in
class.

Collision Resolution: Quadratic probing

e With linear probing, if there is a collision at H, we try H,
H+1, H+2, H+3, ... (all modulo the table size) until we
find an empty spot.

— Causes (primary) clustering

e With quadratic probing, we try H, H+12. H+22, H+32, ...

— Eliminates primary clustering, but can cause secondary
clustering.
— Is it possible that it misses some available array positions?

— l.e it repeats the same positions over and over, while never
probing some other positions?

Hints for quadratic probing

e Choose a prime number for the array size, then ...
— If the array is not more than half full, finding a place to do an
insertion is guaranteed , and no cell is probed twice before finding it
— Suppose the array size is P, a prime number greater than 3
— Show by contradiction that if i and j are < |P/2], and if i#], then
H +i? (mod P) # H + j2 (mod P).
e Use an algebraic trick to calculate next index

— Replaces mod and general multiplication with subtraction and a bit
shift

— Difference between successive probes:

e H+ (i+1)2= H+i2+ (2i+1) [can use a bit-shift for the multiplication].
¢ nextProbe = nextProbe + (2i+1);
if (nextProbe >=P) nextProbe -=P;

Quadratic probing analysis

* No one has been able to analyze it

e Experimental data shows that it works well

— Provided that the array size is prime, and is the
table is less than half full

Hashing Highlights (consider this later)

e We cover this pretty thoroughly in CSSE 230, and Levitin
does a good job of reviewing it concisely, so I'll have
you read it on your own (section 7.3).

e On the next slides you'll find a list of things you should
know (some of them expressed here as questions)

e Details in Levitin section 7.3 and Weiss chapter 20.
e QOutline of what you need to know is on the next slides.

e Will not cover them in great detail in class, since they
are typically covered well in 230.

Hashing — You should know, part 1

e Hash table logically contains key-value pairs.

e Represented as an array of size m. H[0..m-1]
Typically m is larger than the number of pairs
currently in the table.

e Hash function h(K) takes key K to a number in
range 0..m

e Hash function goals:

— Distribute keys as evenly as possible in the table.
— Easy to compute.
— Does not require m to be a lot larger than the_.- .« &

number of keys in the table. v

10

Hashing — You should know, part 2

e Load factor: ratio of used table slots to total table
slots.
— Smaller 2 better time efficiency (fewer collisions)
— Larger -2 better space efficiency

e Two main approaches to collision resolution
— Open addressing
- Se

e Open addressing basic idea

— When there is a collision during insertion,
systematically check later slots (with wraparound) until
we find an empty spot.

— When searching, we systematically move through the
array in the same way we did upon insertion until _

we find the key we are looking for or an empty §.=%
slot. v

Hashing — You should know, part 3

e Open addressing — linear probing

— When there is a collision, check the next cell, then
the next one,..., (with wraparound)

— Let a be the load factor, and let S and U be the
expected number of probes for successful and
unsuccessful searches. Expected values for S and

U are ; :) :
o E(l R 5(1 + —(-l_a)g)
50% 1.5 25
75% 2.5 8.5

90% 55 50.5 #

11

Hashing — You should know, part 4

e Open addressing — double hashing

— When there is a collision, use another hash
function s(K) to decide how much to increment by
when searching for an empty location in the table

— So we look in H(k), H(k) + s(k), H(k) + 2s(k), ..., with
everything being done mod m.

— If we we want to utilize all possible array positions,
gcd(m, s(k)) must be 1. If m is prime, this will
happen.

Hashing — You should know, part 5

e Separate chaining

— Each of the m positions in the array contains a link
ot a structure (perhaps a linked list) that can hold
multiple values.

— Does not have the clustering problem that can
come from open addressing.

Sm1+§ and U =aq,

— For more details, including quadratic probing, see
Weiss Chapter 20 or my CSSE 230 slides (linked | _
from the schedule page) T e

12

Search for a string within another string

STRING SEARCH

Brute Force String Search Example

The problem: Search for the first occurrence of a
pattern of length m in a text of length n.
Usually, m is much smaller than n.

» What makes brute force so slow?
* When we find a mismatch, we can shift the pattern by
only one character position in the text.

Text:
Pattern:

abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
abracadabra
abracadabra
abracadabra
abracadabra ® o
abracadabra -~ =" ®

abracadabra v

13

Faster String Searching

Was a HW
problem

e A little better: but still ©(mn) on average
— Short-circuit the inner loop

e Brute force: worst case m(n-m+1)

def search(pattern, text):
n, m = lenitext),len{pattern)
for i in range{n-m+l):
1 =0
while] < m and text[i+]] == pattern[]]:
7 +=1
if J==m:
return 1
return False

Horspool's Algorithm Intro

A simplified version of the Boyer-Moore algorithm
A good bridge to understanding Boyer-Moore
Published in 1980

What makes brute force so slow?

— When we find a mismatch, we can only shift the pattern to
the right by one character position in the text.

— Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra

Can we shift farther?
Like Boyer-Moore, Horspool does the comparisons in a
counter-intuitive order (moves right-to-left .~ N

through the pattern) W

14

Horspool's Main Question

e If there is a character mismatch, how far can
we shift the pattern, with no possibility of
missing a match within the text?

e What if the last character in the pattern is
compared with a character in the text that
does not occur in the pattern at all?

e Text: ... ABCDEFG ...
Pattern: CSSE473

How Far to Shift?

Look at first (rightmost) character in the part of the text
that is compared to the pattern:

The character is not in the pattern

..... C...--.-.--. {Cnotin pattern)
BAOBAB

e The character is in the pattern (but not the rightmost)
..... O......----(0occursoncein pattern)
BAOBAB
..... A.(Aoccurstwicein pattern)
BAOBAB

e The rightmost characters do match
..... B oo o
BAOBAB

15

