MA/CSSE 473 Day 13

- 1. **Topological sort**: In a dag, the vertices can be linearly ordered so that every edge's starting vertex is listed before its ending vertex.
- 2. Two Topological sort algorithms (for a **dag**):
 - a. Based on DFS.
 - i. Do a DFS, keeping track of the order in which the nodes are popped off the stack.
 - ii. Reverse the order.
 - b. Source removal algorithm. Repeatedly identify and remove a source node. If there are no cycles, there will always be a source.

Permutation generation: We want to generate all permutations of the numbers 1, 2, ..., n.

3. Bottom-up algorithm. Alternate the insertion orders.

- 4. Johnson-Trotter. Every element has an additional piece of info, its direction (right or left).
 - a. An element is *mobile* if the element it "points to" is smaller than itself.
 - b. Largest mobile element is swapped with the element it points to.
 - c. Then reverse the direction of all larger elements.

А	В	С	D
← ← ← ← ← 1 2 3 4 5			
Е	F	G	Н
T	1	к	L
		A	Ľ
М	Ν	0	Р

5. Which permutation follows each of these in lexicographic order?

183647520

6. Write an algorithm for generating the next permutation, with only N and the current permutation as input.

471638520

7. If the lexicographic permutations of the numbers [0, 1, 2, 3, 4] are numbered starting with 0, what is the number of the permutation 14023? How do you get this?

8. Write an algorithm which, given a permutation of the numbers 0..N-1, calculates its (zero-based) position in the lexicographic ordering of all of the permutations of 0..n-1.

9. In the lexicographic ordering of permutations of [0, 1, 2, 3, 4, 5], which permutation is number 568? How do you get this?