1. Cryptography intro. We focus on how to encode a single integer message m with $0 \leq \mathrm{m}<\mathrm{N}$. e is the encoding key, and d is the decoding key.
2. In public-key cryptography, I give you (e, N) so you can send me a message, but I keep d private.
3. RSA: Choose two large primes p and q, and let $N=p q$.
4. Choose any number e that is relatively prime to $\mathrm{N}^{\prime}=(\mathrm{p}-1)(\mathrm{q}-1)$. Then
a. the mapping $x \rightarrow x^{e} \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$, and
b. If d is the inverse of $e \bmod N^{\prime}$, then for all x in $\{0,1, \ldots, N-1\},\left(x^{e}\right)^{d} \equiv x(\bmod N)$.
5. Example: $\mathrm{p}=63, \mathrm{q}=53$ (so $\mathrm{N}=3233$):
6. Property that is the basis of RSA: If $N=p q$ for 2 primes p and q, and if e is any number that is relatively prime to $N^{\prime}=$ ($\mathrm{p}-1$)($\mathrm{q}-1$), then
a. the mapping $x \rightarrow x e \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$
b. If d is the inverse of $e \bmod (p-1)(q-1)$, then for all x in $\{0,1, \ldots, N-1\},(x e) d \equiv x(\bmod N)$
