1. Summary of where we are so far with randomized primality testing (for a large number N):
a. Fermat's Little Theorem: If p is prime, and a is not $0(\bmod p)$, then $a^{p-1} \equiv 1(\bmod p)$.
i. So if we find an a in range $1<\mathrm{a}<\mathrm{N}$ for which $\mathrm{a}^{\mathrm{N}-1} \not \equiv 1(\bmod \mathrm{~N})$, the number is not prime.
ii. But it is possible that N is composite but there is an a with $\mathrm{a}^{\mathrm{N}-1} \equiv 1(\bmod \mathrm{~N})$.
iii. Such an a is called a Fermat liar.
b. If there is at least one a that is relatively prime to N , for which $\mathrm{a}^{\mathrm{N}-1} \not \equiv 1(\bmod \mathrm{~N})$, then that is true for at least half of the possible values of a.
c. So if there is such an a, we have a good chance of finding one after a reasonable number of tries.
d. A Carmichael number is a composite integer for which $\mathrm{a}^{\mathrm{N}-1} \equiv 1(\bmod \mathrm{~N})$ for all a range $1<\mathrm{a}<\mathrm{N}$. Example: 561 is the smallest Carmichael number.
2. Miller-Rabin test:
a. Note that for some \mathbf{t} and \mathbf{u} (\mathbf{u} is odd), $\mathrm{N}-1=2^{\mathrm{t}} \mathbf{u}$. The \mathbf{t} and \mathbf{u} are unique.
b. Consider the sequence $a^{u}(\bmod N), a^{2 u}(\bmod N), \ldots, a^{(2 \lambda t 0 u}(\bmod N) \equiv a^{\mathrm{N}-1}(\bmod N)$
c. Suppose that at some point, $\mathrm{a}^{\left(2^{\wedge}\right) \mathrm{u}} \equiv 1(\bmod \mathrm{~N})$, but $\mathrm{a}^{\left({ }^{(2 \wedge(i-1)) \mathrm{u}}\right.}$ is not congruent to 1 or to $\mathrm{N}-1(\bmod \mathrm{~N})$
i. Then $a^{\left(2 \lambda^{(i-1)) u}\right.}$ is a non-trivial square root of $1(\bmod N)$, and N cannot be prime (see below)
3. Example: $\mathrm{N}=561$.
4. Important proof in the slides: If there is an s which is neither 1 or $-1(\bmod \mathrm{~N})$, but $s^{2} \equiv 1(\bmod N)$, then N is not prime
5. Rabin showed that if N is composite, this test will demonstrate its non-primality for at least $3 / 4$ of the numbers a that are in the range $1 \ldots \mathrm{~N}-1$, even if \mathbf{a} is a Carmichael number.
6. Efficiency of the test (for an individual a and N):
7. To generate a random prime that is less than M , repeatedly randomly choose numbers less than M until we find one that is prime.
8. RSA cryptography intro. We focus on how to encode a single integer message m with $0 \leq \mathrm{m}<\mathrm{N}$. e is the encoding key, and d is the decoding key. In public-key cryptography, I give you (e, N) so you can send me a message, but I keep d private.
9. Choose two large primes p and q , and let $\mathrm{N}=\mathrm{pq}$.
10. Choose e to be a number that is relatively prime to $\mathrm{N}^{\prime}=(\mathrm{p}-1)(\mathrm{q}-1)$. Then
a. the mapping $x \rightarrow x^{e} \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$, and
b. If d is the inverse of $e \bmod (p-1)(q-1)$, then for all x in $\{0,1, \ldots, N-1\},\left(x^{e}\right)^{d} \equiv x(\bmod N)$.
11. Example: $p=63, q=53$ (so $N=3233$):
