Main ideas from today (and some review from yesterday):

1. r is an inverse of $m(\bmod N)$ iff $r * m \equiv 1(\bmod N)$. If m has an inverse it is unique.
2. We can find the inverse by using the extended Euclidean algorithm. If GCD is not 1 , no inverse.

Show that a number m cannot have two different inverses q and $r(\bmod N)$ that are both in range $1 \ldots \mathrm{~N}-1$.
3. Fermat's Little Theorem: If p is prime, and a is not $0(\bmod p)$, then $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$.
4. What does Fermat's Little Theorem say about $\mathrm{a}^{\mathrm{N}-1}(\bmod \mathrm{~N})$
a. if N is prime?
b. if N is not prime?
5. N Prove: Let $S=\{1,2, \ldots, p-1\}$. For all a in S :

Lemma: Multiplying all of the numbers in S by $(\bmod p)$ permutes S. I.e. $\{a \cdot n(\bmod p): n \in S\}=S$
6. Use the lemma to prove Fermat's little theorem.
7. Note that the inverse of Fermat's little theorem is not true!
8. Prove: If a is a number that is relatively prime to N such that $\mathrm{a}^{\mathrm{N}-1}$ is not congruent to $1 \bmod \mathrm{~N}$, then that same condition must be true for at least half of the numbers in the range $1 . . . \mathrm{N}-1$.
9. What is a Carmichael number, and why are such numbers troublesome for primality testing?
10. Outline our (Carmichael-free) primality testing algorithm
11. Give a simple and efficient algorithm for finding the t and u such that $N-1=2^{t} u$ (where u is odd) .
12. How does the Miller-Rabin test work?

