1. Modular exponentiation $x^{Y}(\bmod N)$. Why not just compute the power and then find the remainder mod N ?

Alternative 1: Compute the remainder after ever multiplication:

Alternative 2: Cut down on the number of multiplications.
2. Prove by induction that in an Odd Pie Fight, at least one participant does not get hit by a pie.
3. What problem does Euclid's Algorithm solve?

How do we know that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x-y)$?
4. Show the recursive calls for Euclid's Algorithm applied to $\mathrm{a}=188$ and $\mathrm{b}=144$.
5. The following two conditions imply that $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$:
a.
b.
6. What is an upper bound on the number of recursive calls needed to compute gcd (a, b) if $\mathrm{a}>\mathrm{b}$?
7. Use the extended Euclid algorithm to find integers x and y such that $\mathrm{x} * 25+\mathrm{y} * 11=1$.

