1. An Extended Binary Tree with n internal nodes has \qquad external nodes.

Prove the statement from the previous question using (strong) induction, based on the definition of EBT.
2. Which is harder (computationally): factoring numbers or determining whether numbers are prime?
3. Trace the integer division algorithm from class for divide (19, 4) .
4. If x, y and N are k -bit integers, then the time requirement to compute $(\mathrm{x}+\mathrm{y})(\bmod \mathrm{N})$ is $\Theta(\quad)$.
5. If x, y and N are k -bit integers, then the time requirement to compute $(\mathrm{x} * \mathrm{y})(\bmod \mathrm{N})$ is $\Theta(\quad)$.
6. When exponentiating n-bit numbers $x^{y}(\bmod N)$, where N is also $n-b i t$, how many recursive calls are needed?
7. Each call is Θ (
8. Entire exponentiation algorithm is $\theta(\quad)$
9. What problem does Euclid's Algorithm solve?
10. Show the recursive calls for Euclid's Algorithm applied to $\mathrm{a}=188$ and $\mathrm{b}=144$.

