MA/CSSE 473 HW 14 textbook problems and hints
Problem #1 (5) 9.4.4	(maximal Huffman codeword length)
[image:]
Once you have figured out the answer, describe a set of
 probabilities (or frequencies) that make that maximum happen.
Author's hint:	
[image:]
Problem #2	(10) 9.4.10 	(card guessing)
[image:]
Author's hint:	
 [image:]
Problem #3 	(10) Kruskal proof
Problem on Kruskal's algorithm:

The questions

(a) How do we know that v was already part of some connected component of G'?

Does the addition of e to C satisfy the hypothesis of the lemma? For each statement below, explain why it is true.

(b) G’ is a subgraph of some MST for G:

(c) C is a connected component of G':

(d) e connects a vertex in C to an vertex in G – C:

(e) e satisfies the minimum-weight condition of the lemma:

The algorithm:
· To find a MST for a connected undirectedG:
· Start with a graph G' containing all of the n vertices of G and no edges.
· for i = 1 to n – 1:
· Among all of G’s edges that can be added without creating a cycle, add one (call it e) that has minimal weight.
The property we are trying to prove: Before every loop execution, G' is a subgraph of some MST of G.

Proof is (of course) by induction on i.
BASE CASE: When I = 1, G' consists of only vertices of G. Since all vertices must be part of any MST for G, G is a subgraph of every MST.

INDUCTION STEP. Assume that G' is a subgraph of an MST for G. Choose e according to the above algorithm. Show that G' {e} is a sungraph of an MST of G.

The Lemma we want to use: Let G be a weighted connected graph with a MST T; let G′ be any subgraph of T, and let C be any connected component of G′. If we add to C an edge e=(v,w) that has minimum-weight among all of the edges that have one vertex in C and the other vertex not in C, then G has an MST that contains the union of G′ and e.

In order to be able to use the lemma, we have to pick a connected component of C, and show that it satisfies the conditions of the lemma. We let v be one of the vertices of e, and let C be the connected component of G' that contains v.

Within this context, answer the 5 questions above.

Problem #4 (20) 8.3.11bc [8.3.10bc] matrix chain mltiplication
[image:]
[image:]
Author's hint:
[image:]
Problem #5 (5) 9.2.8	(efficiency of find in union-by-size)
 [image:]
Author's hint:
[image:]

Problem #6 (5) 11.1.1	(lower bound for alternating disk algorithm) [image:] .
Author's hint:	
[image:]
Problem #7	(5) 11.1.4	(fake coin minimum number of guesses)
[image:]
Author's hint:	
 [image:]
Problem #8 	 (12) 11.1.10 (matrix multiplication and squaring) (6, 6)
[image:]
Author's hint:
[image:]

Problem #9 (9) 11.2.10ab [11.2.8ab] (advanced fake-coin problem) (4, 5) [image:]
[image:]
Author's hint
: [image:]
Problem #10 (5) 11.3.1	(Chess decidable?) Explain your answer.
. [image:]
Author's hint:
[image:]
Problem #11 (8) 11.3.2	(tractable?) Explain your answer.
[image:]
Author's hint:
[bookmark: _GoBack][image:]
image6.png
tions.

a. Give an example of three matrices for which the number of multipli
in (A - Ay) - Asand A; - (A; - A3) differ at least by a factor of 1000.
b. How many different ways are there to compute the product of n matrices?

¢ Design a dynamic programming algorithm for finding an optimal order of
multiplying n matrices.

image7.png
b. You can get the answer by following the approach used for count-
ing binary trees.

c. The recurrence relation for the optimal number of multiplications in
computing A; - ..+ A; is very similar to the recurrence relation for the
optimal number of comparisons in searching in a binary tree composed of

r—

image8.png
8. Prove that the time efficiency of find(z) is in O(logn) for the union-by-size
version of quick union.

image9.png
8 The argument is very similar to the one made in the section for the union-
by-size version of quick find.

image10.png
1. Prove that any algorithm solving the alternating-disk puzzle (Problem 11
in Exercises 3.1) must make at least n(n + 1)/2 moves to solve it. Is this
lower bound tight?

image11.png
1. Ts it possible to solve the puzzle by making fewer moves than the brute-
force algorithm? Why?

image12.png
4. Consider the problem of identifying a lighter fake coin among n identical-
looking coins with the help of a balance scale. Can we use the same
information-theoretic argument as the one in the text for the number of
questions in the guessing game to conclude that any algorithm for identi-
fying the fake will need at least [log,] weighings in the worst case?

image13.png
4. Reviewing Section 5.5, where the fake-coin problem was introduced, should
help in answering the question.

image14.png
10. a. Can we use this section’s formulas that indicate the complexity equiv-
alence of mltiplication and squaring of integers to show the complexity
equivalence of multiplication and squaring of square matrices?

b. Show that multiplication of two matrices of order n can be reduced
to squaring a matrix of order 2n.

image15.png
10. a. Check whether the formulas hold for two arbitrary square matrices.

b. Use a formula similar to the one showing that multiplication of ar-
bitrary square matrices can be reduced to multiplication of symmetric
‘matrices.

image16.png
8. Advanced fake-coin problem There are n > 3 coins identical in appear-
ance; either all are genuine or exactly one of them is fake. It is unknown
whether the fake coin is lighter or heavier than the genuine one. You have

image17.png
a balance scale with which you can compare any two sets of coins. That
is, by tipping to the left, to the right, or staying even, the balance scale
will tell whether the sets weigh the same or which of the sets is heavier
than the other, but not by how much. The problem is to find whether
all the coins are gemuine and, if not, to find the fake coin and establish
whether it is lighter or heavier then the genuine ones.

a. Prove that any algorithm for this problem must make at least [log, (2n-+
1)] weighings in the worst case.

b. Draw a decision tree for an algorithm that solves the problem for
n=3 coins in two weighings.

image18.png
8. a. How many outcomes does this problem have?

b. Draw a ternary decision tree that solves the problem.

image19.png
1. A game of chess can be posed as the following decision problem: given
a legal positioning of chess pieces and information about which side is
to move, determine whether that side can win. Is this decision problem
decidable?

image20.png
1. Check the definition of a decidable decision problem.

image21.png
2. A certain problem can be solved by an algorithm whose running time is
in O(n'“:™). Which of the following assertions is true?

a. The problem is tractable.
b. The problem is intractable.

c. None of the above.

image22.png
2. First, determine whether n/%:" is a polynomial function. Then read
carefully the definitions of tractable and intractable problems.

image1.png
4. What is the maximal length of a codeword possible in a Huffman encoding
of an alphabet of n characters?

image2.png
4. The maximal length of a codeword relates to the height of Huffman’s
coding tree in an obvious fashion. Try to find a set of n specific frequencies
for an alphabet of size 7 for which the tree has the shape yielding the
longest codeword possible.

image3.png
10. Card guessing Design a strategy that minimizes the expected number of
questions asked in the following game [Gar94], #52. You have a deck of
cards that consists of one ace of spades, two deuces of spades, three threes,
and on up to nine nines, making 45 cards in all. Someone draws a card
from the shuffled deck, which you have to identify by asking questions
answerable with yes or no.

image4.png
10. A similar example was discussed at the end of Section 9.4. Construct
Huffman’s tree and then come up with specific questions that would yield
that tree. (You are allowed to ask questions such as: Is this card the ace,
or a seven, or an eight?)

image5.png
11. Matrix chain multiplication Consider the problem of minimizing the total
number of multiplications made in computing the product of n matrices

AArA,

whose dimensions are do x dy. dy da. ... d,_y % d,, espectively. Assume
that all intermediate products of two matrices are computed by the brute-
force (definition-based) algorithm.

