MA/CSSE 473
Day 33

Student Questions
>
-~ ~
Change to HW 13 > P -~
-

Minimal Spanning
Tree

Kruskal

Prim

Kruskal and Prim

ALGORITHMS FOR FINDING A
MINIMAL SPANNING TREE

Kruskal’s algorithm

e To find a MST (minimal Spanning Tree):

e Start with a graph T containing all n of G’s
vertices and none of its edges.
e fori=1ton-1:

— Among all of G’s edges that can be added without
creating a cycle, add to T an edge that has minimal
weight.

— Details of Data Structures later

Prim’s algorithm

e Start with T as a single vertex of G (which is a
MST for a single-node graph).

e fori=1ton-1:
— Among all edges of G that connect a vertex in T to

a vertex that is not yet in T, add a minimum-weight
edge (and the vertex at the other end of T).

— Details of Data Structures later

Ry

ia) / I:Ib i z " 4 ﬁ%yr ()] / | i) ‘I 4 J149("
NP SN NV VNV Example of
L 1 Prim’s
algorithm

o

Correct?

e These algorithms seem simple enough, but do
they really produce a MST?

e We examine lemma that is the crux of both
proofs.

e |t is subtle, but once we have it, the proofs are
fairly simple.

MST lemma

Let G be a weighted connected graph,
let T be any MST of G,

let G’ be any subgraph of T, and

let C be any connected component of G.

Then:

— If we add to C an edge e=(v,w) that has minimum-weight
among all edges that have one vertex in C and the other
vertex not in C,

— G has an MST that contains the union of G' and e.

[WLOG, v is the vertex of e that is in C, and w is not in C]
Summary: If G'is a subgraph of an MST, so is G'\U{e}

Recap: MST lemma

Let G be a weighted connected graph with an MST T;
let G’ be any subgraph of T, and let C be any connected component of G'.

If we add to C an edge e=(v,w) that has minimum-weight among all
edges that have one vertex in C and the other vertex not in C,

then G has an MST that contains the union of G’ and e.

Recall Kruskal’s algorithm
e To find a MST for G:

— Start with a connected weighted graph containing all of
G’s n vertices and none of its edges.
—fori=1ton-1:
e Among all of G’s edges that can be added without creating a
cycle, add one that has minimal weight.

Does this algorithm actually .y -

produce an MST for G? v

Does Kruskal produce a MST?

e Claim: After every step of Kruskal’s algorithm, we
have a set of edges that is part of an MST of G

e Proof of claim: Base case ...

e Induction step:

— Induction Assumption: before adding an edge we have a
subgraph of an MST

— We must show that after adding the next edge we have a
subgraph of an MST

— Details:

Does Prim produce an MST?

e Proof similar to Kruskal (but slightly simpler)
e |t's done in the textbook

Recap: Prim’s Algorithm for
Minimal Spanning Tree

e Start with T as a single vertex of G (which is a
MST for a single-node graph).
e fori=1ton—-1:

— Among all edges of G that connect a vertexin T to
a vertex that is not yet in T, add to T @ minimum-
weight edge.

At each stage, T is a MIST for a connected subgraph
of G ° e
-."-‘-T ®

We now examine Prim more closely v

Main Data Structures for Prim

Start with adjacency-list representation of G

Let V be all of the vertices of G, and let V; the
subset consisting of the vertices that we have
placed in the tree so far

We need a way to keep track of "fringe" edges

— i.e. edges that have one vertexin V;
and the other vertex in V -V,

Fringe edges need to be ordered by edge weight
— E.g., in a priority queue
What is the most efficient way to implement a e -

priority queue? v

Prim detailed algorithm summary

e Create a minheap from the adjacency-list

representation of G

— Each heap entry contains a vertex and its weight

— The vertices in the heap are those notyetin T

— Weight associated with each vertex v is the minimum
weight of an edge that connects v to some vertexin T

— If there is no such edge, v's weight is infinite

e Initially all vertices except start are in heap, have infinite weight

— Vertices in the heap whose weights are not infinite are the
fringe vertices

— Fringe vertices are candidates to be the next vertex (with
its associated edge) added to the tree

e Loop:
— Delete min weight vertex from heap, add itto T
— We may then be able to decrease the weights -4 :

associated with one or vertices that are adjacent ==
tov v

MinHeap overview

e We need an operation that a standard binary
heap doesn't support:
decrease(vertex, newWeight)

— Decreases the value associated with a heap element
¢ Instead of putting vertices and associated edge

weights directly in the heap:

— Put them in an array called key][]

— Put references to them in the heap

Min Heap methods

operation description run time

del() | delete and return he location in key[] of) e(og)
the minimum element

keyVal(w) The weight associated with vertex w 6(1)
(minimum weight of an edge from that
vertex to some adjacent vertex that is in the
tree).

vchanges the weight ass!

