

Kruskal's algorithm

- To find a MST (minimal Spanning Tree):
- Start with a graph T containing all n of G's vertices and none of its edges.
- for i = 1 to n 1:
 - Among all of G's edges that can be added without creating a cycle, add to T an edge that has minimal weight.
 - Details of Data Structures later

Prim's algorithm

- Start with T as a single vertex of G (which is a MST for a single-node graph).
- for i = 1 to n 1:
 - Among all edges of G that connect a vertex in T to a vertex that is not yet in T, add a minimum-weight edge (and the vertex at the other end of T).
 - Details of Data Structures later

Correct?

- These algorithms seem simple enough, but do they really produce a MST?
- We examine lemma that is the crux of both proofs.
- It is subtle, but once we have it, the proofs are fairly simple.

MST lemma

- Let G be a weighted connected graph,
- let T be any MST of G,
- let G' be any subgraph of T, and
- let C be any connected component of G'.
- Then:
 - If we add to C an edge e=(v,w) that has minimum-weight among all edges that have one vertex in C and the other vertex not in C,
 - G has an MST that contains the union of G' and e.

[WLOG, v is the vertex of e that is in C, and w is not in C]

Summary: If G' is a subgraph of an MST, so is $G' \cup \{e\}$

5

Recap: MST lemma

Let G be a weighted connected graph with an MST T; let G' be any subgraph of T, and let C be any connected component of G'. If we add to C an edge *e=(v,w)* that has minimum-weight among all edges that have one vertex in C and the other vertex not in C,

then G has an MST that contains the union of G^{\prime} and e.

Recall Kruskal's algorithm

- To find a MST for G:
 - Start with a connected weighted graph containing all of G's n vertices and none of its edges.
 - for i = 1 to n 1:
 - Among all of G's edges that can be added without creating a cycle, add one that has minimal weight.

Does this algorithm actually produce an MST for G?

Does Kruskal produce a MST?

- Claim: After every step of Kruskal's algorithm, we have a set of edges that is part of an MST of G
- Proof of claim: Base case ...
- Induction step:
 - Induction Assumption: before adding an edge we have a subgraph of an MST
 - We must show that after adding the next edge we have a subgraph of an MST
 - Details:

Does Prim produce an MST?

- Proof similar to Kruskal (but slightly simpler)
- It's done in the textbook

Recap: Prim's Algorithm for Minimal Spanning Tree

- Start with T as a single vertex of G (which is a MST for a single-node graph).
- for i = 1 to n 1:
 - Among all edges of G that connect a vertex in T to a vertex that is not yet in T, add to T a minimumweight edge.

At each stage, T is a MST for a connected subgraph of G

We now examine Prim more closely

Main Data Structures for Prim

- Start with adjacency-list representation of G
- Let V be all of the vertices of G, and let V_T the subset consisting of the vertices that we have placed in the tree so far
- We need a way to keep track of "fringe" edges
 - i.e. edges that have one vertex in V_T and the other vertex in $V V_T$
- Fringe edges need to be ordered by edge weight
 - E.g., in a priority queue
- What is the most efficient way to implement a priority queue?

Prim detailed algorithm summary

- Create a minheap from the adjacency-list representation of G
 - Each heap entry contains a vertex and its weight
 - The vertices in the heap are those not yet in T
 - Weight associated with each vertex v is the minimum weight of an edge that connects v to some vertex in T
 - If there is no such edge, v's weight is infinite
 - Initially all vertices except start are in heap, have infinite weight
 - Vertices in the heap whose weights are not infinite are the fringe vertices
 - Fringe vertices are candidates to be the next vertex (with its associated edge) added to the tree
- Loop:
 - Delete min weight vertex from heap, add it to T
 - We may then be able to decrease the weights associated with one or vertices that are adjacent to v

MinHeap overview

 We need an operation that a standard binary heap doesn't support:

decrease(vertex, newWeight)

- Decreases the value associated with a heap element
- Instead of putting vertices and associated edge weights directly in the heap:
 - Put them in an array called key[]
 - Put references to them in the heap

Min Heap methods		
description	run time	
build a MinHeap from the array of keys	Θ(n)	
delete and return (the location in key[] of) the minimum element	Θ(log n)	
is vertex w currently in the heap?	Θ(1)	
The weight associated with vertex w (minimum weight of an edge from that vertex to some adjacent vertex that is in the tree).	Θ(1)	
changes the weight associated with vertex w to newWeight (which must be smaller than w's current weight)	⊖(log n)	
	build a MinHeap from the array of keys delete and return (the location in key[] of) the minimum element is vertex w currently in the heap? The weight associated with vertex w (minimum weight of an edge from that vertex to some adjacent vertex that is in the tree). changes the weight associated with vertex w to newWeight (which must be smaller than	