Announcements:

1. HW $\mathbf{1 2}$ due Thursday, Oct 30 .
2. I will be off-campus Oct 30 in the afternoon and most of Oct 31 (I hope to be here for hours 9-10) due to my IVIG infusions.
3. No class meeting Oct 31.
4. Exam 2 Tuesday Nov 4 in class. Exam specification is linked from Day 34 in the schedule page.
5. HW 13 due Thursday, Nov 6, HW 14 Monday Nov 10.
6. Final Exam Monday Nov 17 at 6:00 PM.
7. In my office today: hours $6,8,9$.

Main ideas from today: Optimal Binary Search trees.

1. Formally, an Extended Binary Tree (EBT) is either
a. an external node, or
b. an (internal) root node and two EBTs T_{L} and T_{R}
2. The external nodes stand for places where an unsuccessful search can end or where an element can be inserted
3. An EBT with n internal nodes has $\mathrm{n}+1$ external nodes. (We proved this by induction earlier in the term)
4. For successful search, number of probes is one more than the depth of the corresponding internal node.
5. For unsuccessful, number of probes is equal to the depth of the corresponding external node.
6. Optimal BST notation:
a. Keys are $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{n}}$
b. Let v be the value we are searching for
c. For $\mathrm{i}=1, \ldots, \mathrm{n}$, let a_{i} be the probability that v is key K_{i}
d. For $\mathrm{i}=1, \ldots, \mathrm{n}-1$, let b_{i} be the probability that $\mathrm{K}_{\mathrm{i}}<\mathrm{v}<\mathrm{K}_{\mathrm{i}+1}$
e. Similarly, let b_{0} be the probability that $\mathrm{v}<\mathrm{K}_{1}$,
and b_{n} the probability that $v>K_{n}$

$$
\sum_{i=1}^{n} a_{i}+\sum_{i=0}^{n} b_{i}=1
$$

f. We can also just use frequencies instead of probabilities when finding the optimal tree (and divide by their sum to get the probabilities if we ever need them). That is what we will do.
8. Should we try exhaustive search of all possible BSTs? How many are there?

$$
\mathrm{n}=2
$$

$$
\mathrm{n}=3
$$

$\mathrm{n}=4$
9. write the recurrence relation, apply it to $\mathrm{n}=5$ case
10. Solution of this recurrence:
11. We want to minimize weighted path length,

$$
C(T)=\sum_{i=1}^{n} a_{i}\left[1+\operatorname{depth}\left(x_{i}\right)\right]+\sum_{i=0}^{n} b_{i}\left[\operatorname{depth}\left(y_{i}\right)\right]
$$

12. You will show by induction (HW 12) that $\mathrm{C}(\mathrm{T})$ can be calculated by the recursive formula

- $\mathrm{C}($ empty EBT$)=0$,
- If T has a root and two subtrees T_{L} and $\mathrm{T}_{\mathrm{R}}, \mathrm{C}(\mathrm{T})=\mathrm{C}\left(\mathrm{T}_{\mathrm{L}}\right)+\mathrm{C}\left(\mathrm{T}_{\mathrm{R}}\right)+\Sigma \mathrm{a}_{\mathrm{i}}+\Sigma \mathrm{b}_{\mathrm{i}}$,
- where the summations are over all a_{i} and b_{i} for nodes in T

13. Consider these Frequencies of vowel occurrence in English A, E, I, O, U

$$
\text { a's: } \quad 32, \quad 42, \quad 26, \quad 32, \quad 12
$$

b's: $0,34, \quad 38, \quad 58, \quad 95,21$
14. Draw two different trees (with E and I as root), and calculate $\mathrm{C}(\mathrm{T})$ for each.

