MA/CSSE 473
Day 23

Student questions
Space-time tradeoff

Hash tables review

Sometimes using a little more space saves a lot of
time

SPACE-TIME TRADEOFFS

Space vs time tradeoffs

e Often we can find a faster algorithm if we are
willing to use additional space.

e Give some examples
e Examples:

Space vs time tradeoffs

e Often we can find a faster algorithm if we are
willing to use additional space.

* Give some examples (quiz question)

e Examples:

— Binary heap vs simple sorted array. Uses one extra
array position

— Merge sort

— Radix sort and Bucket Sort

— Anagram finder

— Binary Search Tree (extra space for the pointers)
— AVL Tree (extra space for the balance code)

A Quick Review

HASH TABLE IMPLEMENTATION

Hash Table Review

Section 7.4 of Levitin
Excellent detailed reference: Weiss Chapter 20.
Coveredin 230

— Both versions of the course
— A link to one version: http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides/17-Graphs-
HashTables.pdf
Three questions on today's handout guide you through a
quick review; the above link may be helpful. Do it with
two other students. 20 minutes.

Then we will prove a property of quadratic probing that is
described in 230 but seldom proved there.

If you don't understand the effects of clustering, you might find the -

animation that is linked from this page to be especially helpful. T
. http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html v

Hashing Review

Discuss the following questions in a group of three students

e What problem do we try to solve by hashing?
e What is the general idea of how hashing works?

e Why does it fit into Chapter 7 (space-time
tradeoffs)?

e What are the main issues to be addressed when
discussing hashing implementation?

e How to choose between a hash table and a
binary search tree?

Terminology and analysis

If any of this terminology is unfamiliar, you should
look it up

e collision

load factor (M)

perfect hash function

open addressing

— linear probing

— cluster

— quadratic probing

— rehashing

separate chaining =T

€

Some Hashing Details ...

e Can be found on this page:

e http://www.rose-
hulman.edu/class/csse/csse230/201230/Slides
/17-Graphs-HashTables.pdf

e Similar to Weiss's presentation

e They are linked from here in case you didn't
"get it" the first time in CSSE230.

e We will not go over all of them in detail in
class.

Collision Resolution: Quadratic probing

e With linear probing, if there is a collision at H, we try H,
H+1, H+2, H+3, ... (all modulo the table size) until we
find an empty spot.

— Causes (primary) clustering
e With quadratic probing, we try H, H+12. H+22, H+32, ...
— Eliminates primary clustering, but can cause secondary
clustering.
— Is it possible that it misses some available array positions?

— l.e it repeats the same positions over and over, while never
probing some other positions?

Hints for quadratic probing

* Choose a prime number for the array size, then ...

— If the array is not more than half full, finding a place to do an
insertion is guaranteed, and no cell is probed twice before finding it

— Suppose the array size is P, a prime number greater than 3
— Show by contradiction that if i and j are < |P/2], and i#j, then
H +i2 (mod P) # H + j? (mod P).
e Use an algebraic trick to calculate next index
— Replaces mod and general multiplication with subtraction and a bit

shift
— Difference between successive probes:
e H+ (i+1)2= H+i2+ (2i+1) [can use a bit-shift for the multiplication].

e nextProbe = nextProbe + (2i+1);
if (nextProbe >=P) nextProbe -=P;

Quadratic probing analysis

* No one has been able to analyze it

e Experimental data shows that it works well

— Provided that the array size is prime, and is the
table is less than half full

Search for a string within another string

STRING SEARCH

Brute Force String Search Example

The problem: Search for the first occurrence of a
pattern of length m in a text of length n.
Usually, m is much smaller than n.

* What makes brute force so slow?
* When we find a mismatch, we can shift the pattern by
only one character position in the text.

Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra ® o
abracadabra - =" 8

abracadabra v

Faster String Searching

Was a HW
problem

o A little better: but still ©(mn) on average
— Short-circuit the inner loop

e Brute force: worst case m(n-m+1)

def search{pattern, text):
n, m = len(text),lenipattern)
for 1 in range(n-m+l;:
1 =0
while] < m and text[i+]] == pattern[]]:
7 +=1
if J==m:
return 1
return False

Horspool's Algorithm Intro

A simplified version of the Boyer-Moore algorithm
A good bridge to understanding Boyer-Moore
Published in 1980

What makes brute force so slow?

— When we find a mismatch, we can only shift the pattern to
the right by one character position in the text.

— Text: abracadabtabradabracadabcadaxbrabbracadabraxxxxxxabracadabracadabra
Pattern: abracadabra
abracadabra
abracadabra
abracadabra

Can we shift farther?
Like Boyer-Moore, Horspool does the comparisons in a
counter-intuitive order (moves right-to-left .~ N

through the pattern) W

Horspool's Main Question

e If there is a character mismatch, how far can
we shift the pattern, with no possibility of
missing a match within the text?

e What if the last character in the pattern is
compared with a character in the text that
does not occur in the pattern at all?

e Text: ... ABCDEFG ...
Pattern: CSSE473

How Far to Shift?

Look at first (rightmost) character in the part of the text
that is compared to the pattern:

The character is not in the pattern

..... C...-.-.----. {Cnotin pattern)
BAOBAB

e The character is in the pattern (but not the rightmost)
..... O......-.---(0occursoncein pattern)
BAOBAB
..... A.-.(Aoccurstwicein pattern)
BAOBAB

e The rightmost characters do match
..... B oo o
BAOBAB .

