MA/CSSE 473

Day 14 ° o

o ..

Permutations
wrap-up

Subset generation

(Horner’s method)

MA/CSSE 473 Day 14

e Student questions

e Monday will begin with "ask questions about
exam material” time.

e Exam details are Day 16 of the schedule page.
e Today's topics:
— Permutations wrap-up

— Generating subsets of a set
— (Horner’s method)

Permutations and order

number permutation number permutation e (Given a perm utation

g) 12 2013 of 0, 1, ..., n-1, can

1 0132 13 2031 d tl f d th

2 0213 14 2103 We irec y In N e

3 o 15 2130 next permutation in
a 0312 16 2301 the lexicographic

5 0321 17 2310 sequence?

6 1023 18 3012 . .

; 1032 = 3021 e Given a permutation
8 1203 20 3102 of 0..n-1, can we

o 1230 b I determine its

10 1302 22 3201 .

11 1320 23 3210 permUtatlon

sequence number?

e Given n and i, can we directly generate

the it" permutation of 0, ..., n-1? E;-v

Yesterday's Discovery

e Which permutation follows each of these in
lexicographic order?
— 183647520 471638520

— Try to write an algorithm for generating the next
permutation, with only the current permutation as
input.

Lexicographic Permutation class

class Permutation:
"Set current to the unpermuted list."”

def init (self, n):
self.current = list(range(0, n))
self.n = n
self.more = True # This is not the last permutaticn.

def swap(self, i, J):
self.current[i], self.current[j] = self.current[j], self.current[i]

def reverse(self, i, j):
while j > i:
self.swap (i, 3J)
i+=1
j =1

e These are the basics of the class setup.

e The next() method provides an iterator over
the permutations. How should it get from one -

permutation to the next? v

Main permutation method

def next(self):
"return current permutation and calculate next one”
if not self.more:
return False
returnValue = list (self.current)
i = gelf.n — 2
while self.current[i] > self.current[i + 1]:

i —= 1 % This avoids array-out-of-bounds because
if i == - 1: # in Python, al[-1] means al[len(a)-1]
self.more = False
else:

] = self.n - 1
while self.current[i] > self.current[]]:

] =1
self.swap(i, 3J)
self.reverse(i + 1, self.n - 1)
return "".Join([str(v) for v in returnvalue])

More discoveries

e |f the lexicographic permutations of the numbers
[0, 1, 2, 3, 4] are numbered starting with 0, what
is the number of the permutation 140327

— General algorithm? How to calculate efficiency?

¢ |n the lexicographic ordering of permutations of
[0, 1, 2, 3, 4, 5], which permutation is number
5417 -

— General algorithm? How to calculate efficiently ?:
— Application: Generate a random permutation '

Memoized factorial function

class FactTable: #memoized factorial function

def init (self):
self.table = [120, 24, &, 2, 1, 1]
self.max = 5

def get(s=slf, n):
if n <= self.max: # it's already in thr table
return self.table[self.max - n]
for 1 in range(self.max+l, n+l): # put factorials in table
self.table= [i*self.table[0]] + self.table
self.max = n
return self.table[0]

ft = FactTable()

Find a permutation's sequence #

def permNumber (p) :

nrrgssumes that p is a permutation of 0. .n-1.
returns k such that p is the kth Jlexicographic
permutation of those numbers. """
p = list(p) # make a copy
n = lenip)
factList = [ft.get(i) for i in range (n-1,-1,-1)]
sum = 0
for 1 in range(n):

sum += p[i] * factList[i]

for j in range(i + 1, n):

if pl[j]l > plil:
pljl =1

return sum

Find permutation from sequence #

def kthPermutationi(s, k):
"""return the kth lexocographic permutation of the
distinct elements in list s. Inverse of permNumber()"""
5 = list(s)
result = []
factTable = [ft.get (i) for i in range (len(s)-1,-1,-1)]
for divisor in factTable:
multiple = k // divisor
k= k % divisor
element = s[multiple]
result.append (element)
s.remove (element)
return result

Bottom-up, “numeric order”, binary reflected Gray code

SUBSET GENERATION

Generate all Subsets of a Set

e Sample Application:
— Solving the knapsack problem
— In the brute force approach, we try all subsets

e |If Ais a set, the set of all subsets is called the
power set of A, and often denoted 24

e If Als finite, then |2 A| = 2IA

e So we know how many subsets we need to
generate.

Generating Subsets of {a,, ..., a,}

Decrease by one (bottom up):
the collection of the 2" subsets

Generate S, ;,
of {a,, ..., a4}
ThenS =S, ,U{S,;u{a,}:seS, }
Numeric approach:

— Each subset of {a,, ..., a,} corresponds to an bit
string of length n, where the it" bit is 1 iff a. is in the
subset

Details of numeric approach:

e Each subset of {a,, ..., a,} corresponds to a bit
string of length n, where the Jt bit is 1 if and

only if a, is in the subset Output for
def allSubsets(a): a=[1, 2, 3]:

n = len(a) L[], [1].

subsets=[] [21., [1, 2],

for 1 In range(2**n): [31. [1., 3].
subset = [] [2, 3]
current = i ’ ’
for j in range (n): [1. 2, 3]]

if current % 2 == 1:

subset += [a[Jj]]l
current /= 2
subsets += [subset]
return subsets

Gray Codes
e Named for Frank Gray

e An ordering of the 2" n-bit binary codes such that any
two consecutive codes differ in only one bit

e Example:
000, 001, 011, 010, 110, 111, 101, 100

e Note also that only one bit changes between the last
code and the first code.

e A Gray code can be represented by its transition
sequence: indicates which bit changes each time
In above example: 0,1,0,2,0,1,0

e Traversal of the edges of a (hyper)cube.

e Interms of subsets, the transition sequence tells which
element to add or remove from one subset to get the
next subset

Recursively Generating a Gray Code

* Binary Reflected Gray Code
eT,=0

e T, =T ,n,Treversed

e Show by induction that T reversed = T
e Thus T,,;=T,,n, T,

n

Iteratively Generating a Gray Code

e We add a parity bit, p.
e Set all bits (including p) to 0.
while True:

printSet (a)
p=1-p #flip the parity bit

if p == 1:
3 =20
else:
i =1
while a[j-1]==0: # find position to the
J += 1 # left of the rightmost 1
if j == n:
break =
aljl = 1 - alil # flip this bit. ®

* Based on Knuth, Volume 4, Fascicle 2, page 6. f

Side road: Polynomial Evaluation

e Given a polynomial
p(x) =ax"+a, X"+ ... +ax +3a,

e How can we efficiently evaluate p(c) for some
number c?

e Apply this to evaluation of "31427894" or any
other string that represents a positive integer.

e Write and analyze (pseudo)code

Horner's method code

def polyEval (coefficientList, wal):
"coefficientList[i] is the coefficient of x*i"
"Uses Horner's method to evaluate polynomial at val"

result = 0
for power in range (len(coefficientlist)-1, -1, -1):

result = result * wval + coefficientList[power]
return result

print (polyEval([4, 0,-7, 0, 3, &1, 3))

Decrease by a constant factor
Decrease by a variable amount

OTHER DECREASE-AND-CONQUER
ALGORITHMS

10

Fake Coin Problem

e We have n coins

e All but one have the
same weight

e Oneis lighter ey,
e We have a balance scale with two pans.

e All it will tell us is whether the two sides have
equal weight, or which side is heavier

e What is the minimum number of weighings that
will guarantee that we find the fake coin?

e Decrease by factor of two. :

Decrease by a Constant Factor

e Examples that we have already seen:
— Binary Search

— Exponentiation (ordinary and modular) by
repeated squaring

— Recap: Multiplication a la Russe (The Dasgupta
book that | followed for the first part of the course
called it "European" instead of "Russian")

e Example . :
11 13 Then strike out any rows whose first
5 26 humber is even, and add up the
2 2 remaining numbers in the second
1 104 column. e
m "'-.-“. ®

11

Decrease by a variable amount

e Search in a Binary Search Tree

e Interpolation Search
— See Levitin, pp190-191
— Also Weiss, Section 5.6.3
e Median Finding

— Find the kt" element of an (unordered) list
of n elements

— Start with quicksort's partition method
— Best case analysis .

12

