MA/CSSE 473
Day 13 ® o

e ' O

Permutation
Generation

MA/CSSE 473 Day 13

HW 6 due Monday , HW 7 next Thursday,

Student Questions

Tuesday’s exam

Permutation generation

=

WHY ARE
_— ANESTHESIOLOGISTS
e, ASSUMED TO
Y BE HONEST

) ) — BECAUSE
)] NUME-ERS
DON'T LIg!

aves. DNsL by Univ AUdick for UFS, Ins

-l Thava &0 B acl oo




Exam 1

e |f you want additional practice problems for
Friday's exam:
— The "not to turn in" problems from various assignments
— Feel free to post your solutions in a Piazza discussion
forum and ask your classmates if they think it is correct
e Allowed for exam:
Calculator, one piece of paper (1 sided,
handwritten)

e See the exam specification document, linked form
the exam day on the schedule page.

About the exam

e Mostly it will test your understanding of things in the
textbook and things we have discussed in class.

e Will not require a lot of creativity (it's hard to do
much of that in 50 minutes).

e Many short questions, a few calculations.

— Perhaps some T/F/IDK questions (example: 5/0/3)
e You may bring a calculator.
¢ And a piece of paper (handwritten on one side).
e | will give you the Master Theorem if you need it.
e Time will be a factor! .

e First do the questions you can do quickly v




Possible Topics for Exam

Formal definitions of O, Modular multiplication,

0,Q. exponentiation

Master Theorem e Extended Euclid algorithm
Fibonacci algorithms and e Modular inverse

their analysis e Fermat's little theorem
Efficient numeric e Rabin-Miller test

multiplication e Random Prime generation

Proofs by induction

i e RSA encryption
(ordinary, strong)

e What would Donald
(Knuth) say? . -

Extended Binary Trees v

Trominoes

Possible Topics for Exam

Brute Force algorithms e Binary Search

Selection sort e Binary Tree Traversals

Insertion Sort e Basic Data Structures

Amortized efficiency (Section 1.4)

analysis e Graph representations

Analysis of growable e BFS, DFS,

array algorithms e DAGs & topological sort
- N




Permutations
Subsets

COMBINATORIAL OBIJECT
GENERATION

Combinatorial Object Generation

e Generation of permutations, combinations,
subsets.

e This is a big topic in CS
e We will just scratch the surface of this subject.

— Permutations of a list of elements (no duplicates)
— Subsets of a set




Permutations

e We generate all permutations of the numbers
1..n.

— Permutations of any other collection of n distinct
objects can be obtained from these by a simple

mapping.
e How would a "decrease by 1" approach work?
— Find all permutations of 1.. n-1
— Insert n into each position of each such permutation

— We'd like to do it in a way that minimizes the change
from one permutation to the next.

— It turns out we can do it so that we always get the next _
permutation by swapping two adjacent elements,.-_ = o

First approach we might think of

e for each permutation of 1..n-1

— fori=0..n-1
e insert n in position i

e That is, we do the insertion of n into each
smaller permutation from left to right each
time

e However, to get "minimal change", we
alternate:
— Insert n L-to-R in one permutation of 1..n-1
— Insert n R-to-L in the next permutation of 1..n-1




Example

e Bottom-up generation of permutations of 123

start ]

insert 2 into 1 right to left 12 21
insert 3into 12 right 1o lelt 123 132 312
insert 3into 21 left to right 321 231 213

e Example: Do the first few permutations for n=4

Johnson-Trotter Approach

e integrates the insertion of n with the generation
of permutations of 1..n-1

e Does it by keeping track of which direction each

number is currently moving
>« o>«

3241

The number k is mobile if its arrow points to an
adjacent element that is smaller than itself

* |n this example, 4 and 3 are mobile




Johnson-Trotter Approach

- o«

3241

e The number k is mobile if its arrow points to an
adjacent element that is smaller than itself.

e In this example, 4 and 3 are mobile

e To get the next permutation, exchange the
largest mobile number (call it k) with its
neighbor

e Then reverse directions of all numbers that are. .

larger than k. Work with —=_=_e
a partner

e |nitialize: All arrows point left on Q1

Johnson-Trotter Driver

def main() :
p = Permutation(4)
list = []
next = p.next()
while next:
list += [next]
next = p.nexti)
print list




Johnson-Trotter background code

left = - 1 # equivalent to the left- and
right = 1 # right-pointing arrows in the book

def swap(listl, 1listz, i, Ji:
"Swap positions i and j in both lists"”
listl[i], 1istl(]j] = 1listl([3j], 1listl[i]
listz[i], 1listz[]]) = list2([3], 1listz[i]

class Permutation:
"Set current to the unpermuuted list, and all directions pointing left"
def _ init_ (self, n):
gelf.current = range(l, n + 1}
gelf.direction = [left] * n
self.n =n
self.more = True # Thﬁs is not the last permutation.

Johnson-Trotter major methods

def isMobileiself, k):
'Y An element of a permutation is mobile if its direction "arrow"
points to an element with a smaller value.'''
return k + seif.direction[k] in range(seif.n; and
gelf.current[k + gelf.direction[k]] < =elf.current[k]

def next(self):
"return current permitation and calculate next one”
if not zelf.more:
return False
returnvalue = [gelf.current[i] for i in range{self.n)]

largestMobile = 0
for 1 in range(self.n):
if =elf.isMobile{i; and self.current[i] > largestMobile:
largestMobile = sgelf.current([i]
largePos = 1

if largestMobile ==
self.more = False # This is the last permutaticn
else:
swap({gself.current, =elif.direction,
largePos, largePos + self.directionl[largePos])
for i in rangeiself.n):
if gelf.currentli] » largestMobile:
zself.direction[i] *= - 1

return "".join{[stri{vy for v in returnvaluel)




Lexicographic Permutation

Generation
e Generate the permutations of 1..n in "natural"
order.

e Let'sdo it recursively.

Lexicographic Permutation Code

def permuterecursive (prefix, remaining):
mrr Generate all lists that begin with prefix and
end with a permutation of remaining™""

if remaining == []: # this is where the recursicn ends
return [prefix]

result = [] # accumlate the list of generated prefixes

for n in remaining:
copy = [e for e in remaining] # need to remcocve a different
copy.remove (n) # number for each suffix we generate.

result += permuterecursive (prefix + [n], copy)
return result

def permute (n):
return permuterecursiwve ([], range(l, n+l))

print (permute (4))




Permutations and order

number permutation number permutation e (Given a perm utation

g ) 12 2013 of 0, 1, ..., n-1, can

1 0132 13 2031 d tl f d th

2 0213 14 2103 We irec y In N e

3 o 15 2130 next permutation in
a 0312 16 2301 the lexicographic

5 0321 17 2310 sequence?

6 1023 18 3012 . .

; 1032 = 3021 e Given a permutation
8 1203 20 3102 of 0..n-1, can we

o 1230 b I determine its

10 1302 22 3201 .

11 1320 23 3210 permUtatlon

sequence number?

e Given n and i, can we directly generate

the it" permutation of 0, ..., n-1? E;-v

Discovery time (with a partner)

e Which permutation follows each of these in
lexicographic order?
— 183647520 471638520

— Try to write an algorithm for generating the next
permutation, with only the current permutation as
input.

e |f the lexicographic permutations of the numbers
[0, 1, 2, 3,4,5] are numbered starting with O,
what is the number of the permutation 140327
— General form? How to calculate efficiency?

¢ |n the lexicographic ordering of permutations of
[0, 1, 2, 3, 4, 5], which permutation is number
5417 -
o = 8

— How to calculate efficiently? v

10



Side road: Polynomial Evaluation

e Given a polynomial
p(x) =ax"+a, X"+ ... +ax +3a,

e How can we efficiently evaluate p(c) for some
number c?

e Apply this to evaluation of "31427894" or any
other string that represents a positive integer.

e Write and analyze (pseudo)code

11



