MA/CSSE 473
Day 07 ® o

>
- -~

> <> .
Extended Euclid's ..

Algorithm

Modular Division

Fermat's little
theorem intro

MA/CSSE 473 Day 07

¢ Student Questions

e Be sure to read today’s announcements,
especially the last item.

e Extended Euclid Algorithm, the “calculate
forward, substitute backward” approach

e Modular Division
e Fermat's Little Theorem
e Intro to primality testing.

Recap: Euclid's Algorithm for gcd

def euclid{a, b):
" INPUT: Two integexs a and b with a >= b >= 0
OUTPUT: ggg(a, b)rmr
if b == 0:
return a
return euclid{b, a & b}

Another place to read about modular
arithmetic, including exponentiation and
inverse: Weiss Sections 7.4-7.4.4

recap: gcd and linear combinations

e Lemma: If d divides both a and b,
and d = ax + by for some integers x and y,
then d = gcd(a,b)

e Proof —we did it yesterday

recap: Extended Euclid Algorithm

def euclidExtended({a, b):
" INPUT: Twe integers a and b with a >= b >= 0
OUTPUT: Integers x, y, d such that d = ged(a, b)
and d = ax + by"""
print (" ", a, b) # so we can see the process.
if b == 0:
return 1, 0, a
x, vy, d = euclidExtended(b, a % b)
return vy, x - af/b*y, d

e Proof that it works

— |l decided that it is a bit advanced for students who just
saw Modular Arithmetic for the first time yesterday.

— If you are interested, look up “extended Euclid proof”

— We’ll do a convincing example. ° o
- = 0

Recap: Forward-backward Example:
gcd (33, 14)

33=2%14+5
14=2*5+4
5=1*4+1

4=4%*1+0,s0gcd(33,14)=1.
Now work backwards ARl Nl TR
stop and check!
1=5-4. Substitute 4 = 14 ;5/
1=5-(14-2%*5)=3*5- 14, Substitute 5=33 - 2*14
1=3(33-2%14)-14=3%33 — 7*14
Thusx=3andy=-7 Done! .

Calculate Modular Inverse (if it exists)

e Assume that gcd(a, N) = 1.

e The extended Euclid's algorithm gives us integers
x and y such thatax + Ny =1

e This implies ax=1 (mod N), so x is the inverse of a
e Example: Find 14! mod 33
— We saw before that 3*33-7*14=1
—-7=26(mod 33) Check: 14*26 = 364 = 11*33 + 1.
— S0 141 =26 (mod 33)

e Recall that Euclid's algorithm is ©(k3), where kis _ _
the number of bits of N. —T e

o

Modular division

e We can only divide b by a (modulo N) if N and
a are relatively prime

e In that case b/a = b-a’l

e What is the running time for modular division?

Primality Testing

e The numbers 7,17, 19, 71, and 79 are primes, but what
about 717197179 (a typical social security number)?
e There are some tricks that might help. For example:
— If nis even and not equal to 2, it's not prime
n is divisible by 3 iff the sum of its decimal digits is divisible by 3,
n is divisible by 5 iff it endsin5o0r0
n is divisible by 7 iff Ln/10] - 2*n%10 is divisible by 7
n is divisible by 11 iff
(sum of n's odd digits) — (sum of n's even digits)
is divisible by 11.
— when checking for factors, we only need to consider prime
numbers as candidates

— When checking for factors, we only need to look for e o
numbers up to sqgrt(n) =" e

Primality testing

e But this approach is not very fast. Factoring is
harder than primality testing.

e |s there a way to tell whether a number is
prime without actually factoring the number?

Like a few other things that we have done so far ion this course, this
discussion follows Dasgupta, et. al., Algortihms (McGraw-Hill 2008) °

Fermat's Little Theorem (1640 AD)

e Formulation 1: If p is prime, then for every
number a with 1 <a<p, aP1=1 (mod p)

e Formulation 2: If p is prime, then for every
number a with 1 £ a <p, aP =a (mod p)

e These are clearly equivalent.
— How do we get from each to the other?

e We will examine a combinatorial proof of the
first formulation.

Fermat's Little Theorem: Proof (part 1)

e Formulation 1: If p is prime, then for every number a with
1<a<p, aP'=1 (mod p)

o letS={1,2,..,p-1}

e Lemma

— For any nonzero integer a, multiplying all of the numbers in S by
a (mod p) permutes S

— l.e.{a-n(mod p):neS}=S i 1 2 3 4 5 6
© Example: p=7, a=3. 3*f 36 2 5 1 4
¢ Proof of the lemma

— Suppose that a:i=a-j (mod p).

— Since pis prime and a # 0, a has an inverse.

— Multiplying both sides by a yields i = j (mod p).

— Thus, multiplying the elements of S by a (mod p) takes each

element to a different element of S. e e

— Thus (by the pigeonhole principle), every number . ==
1..p-1is a-i (mod p) for someiinS. v

Fermat's Little Theorem: Proof (part 2)

e Formulation 1: If p is prime, then for every number a
with 1 <a<p,
a*1=1 (mod p)
o LetS={1,2,.. p-1}

e Recap of the Lemma:
Multiplying all of the numbers in S by a (mod p)
permutes S
e Therefore:
{1, 2, ..., p-1} ={a:1 (mod p), a:2 (mod p), ... a:(p-1) (mod p)}
e Take the product of all of the elements on each side .
(p-1)! =aP?(p-1)! (mod p)
e Since p is prime, (p-1)! is relatively prime to p, so we
can divide both sides by it to get the desired result:
aP1=1 (mod p)

Recap: Fermat's Little Theorem

e Formulation 1: If p is prime, then for every
number a with 1 <a<p, a?1=1 (mod p)

e Formulation 2: If p is prime, then for every
number a with 1 < a<p, aP =a (mod p)

Memorize this one. Know how to prove it.

