MA/CSSE 473
Day 06 ® o

L1
o .«-’ -~

Euclid's Algorithm

MA/CSSE 473 Day 06

e Student Questions

e Odd Pie Fight

e Euclid's algorithm

e (if there is time) extended Euclid's algorithm

Quick look at review topics in textbook

REVIEW THREAD

Another Induction Example

* Pie survivor
— An odd number of people stand in various positions (2D or
3D) such that no two distances between people are equal.
* Each person has a pie

» A whistle blows, and each person simultaneously and accurately
throws his/her pie at the nearest neighbor

— Claim: No matter how the people are arranged, at least one
person does not get hit by a pie

— Let P(n) denote the statement: "There is a survivor in every
odd pie fight with 2n + 1 people”

— Prove by induction that P(n) is true foralln =1

LA]
=

i

Odd Pie fight solution

* The base case is easy: If n = 3 the two persons with the
smallest pairwise distance between them throw at each
other, while the third person throws at one of them
(whoever is closer). Therefore, this third person remains
“unharmed”.

¢ For the inductive step, assume that the assertion is true for
odd n > 3, and consider n + 2 persons. Again, the two
persons with the smallest pairwise distance between them
(the closest pair) throw at each other.

e Consider two possible cases as follows.

— If the remaining n persons all throw at one another, at least one
of them remains “unharmed” by the inductive assumption.

— If at least one of the remaining n persons throws at one of the
closest pair, among the remaining n — 1 persons, at most n — 2
pies are thrown at one another, and hence at least one person e =
must remain “unharmed” because there is not enough ple.s-ttg,hnt ®
everybody in that group. This completes the proof.

Euclid's Algorithm
Heading toward Primality Testing

ARITHMETIC THREAD

Euclid's Algorithm: the problem

One of the oldest known algorithms (about 2500
years old)

The problem: Find the greatest common divisor
(gcd) of two non-negative integers a and b.

The approach you learned in elementary school:
— Completely factor each number

— find common factors (with multiplicity)

— multiply the common factors together to get the gcd
Finding factors of large numbers is hard!

A simpler approach is needed

Euclid's Algorithm: the basis

e Based on the following rule:
— If x and y are positive integers with x >y, then gcd(x, y) =
gcd(y, x mod y)
e Proof of Euclid's rule:
— It suffices to show the simpler rule
- ged(x, y) =ged(y, x - y)
since x mod y can be obtained from x and y by repeated
subtraction
— Any integer that divides both x and y must also
divide x —y, so gcd(x, y) < gcd(y, x—v)
— Any integer that divides both y and x - y must also
divide x, so gcd(y, x-y) < gcd(y, x)
— Putting these together: gcd(y, x-y) = gcd(y, x)

Euclid's Algorithm: the algorithm

def euclid(a, b):
T INPUT: Two integers a and b with a >= b >= 0
OUTPUT: ggg(a, bymrmn
if b == 0:
return a
return euclid(b, a & b}

Example: euclid(60, 36)
Does the algorithm work?
How efficient is it?

Euclid's Algorithm: the analysis

def euclid(a, b):
T INPUT: Two integers a and b with a >= b >= 0
OUTPUT: ggg(a, bymrmn
if b == 0:
return a
return euclid(b, a & b}

Lemma: Ifa>b,thena% b<a/2
Proof
— Ifb<a/2,thena%b<b<a/2
— Ifb>a/2,thena% b=a-b<a/2
Application
— After two recursive euclid calls, both a and b are less than half
of what they were, (i.e. reduced by at least 1 bit)
— Thus if a and b have k bits, at most 2k recursive calls are needed.
— Each recursive call involves a division, ©(k?2) . =

— Thus entire algorithm is at most k? * 2k, which is in ©(k3) v

Euclid's Algorithm: practical use
Divide 210 by 45, and get the result 4 with
remainder 30, so 210=4:45+30.

Divide 45 by 30, and get the result 1 with
remainder 15, so 45=1-30+15.

Divide 30 by 15, and get the result 2 with
remainder 0, so 30=2-15+0.

The greatest common divisor of 210 and 45 is 15.

gcd and linear combinations

e Lemma: If d isa common divisor of a and b,
and d = ax + by for some integers x and y, then
d = gcd(a,b)
* Proof
— By the first of the two conditions, d divides both aand b. No
common divisor can exceed their greatest common divisor, so
d < gcd(a, b)
— gcd(a, b) is a common divisor of a and b, so it must divide ax + by
=d. Thus gcd(a, b) <d
— Putting these together, gcd(a, b) =d
e If we can, for any given a and b, find the xand y as in the
lemma, we have found the gcd.
¢ |t turns out that a simple modification of Euclid's algorithm
will allow us to calculate the x and y.

Extended Euclid Algorithm

def euclidExtended(a, b):

nww TNPUT: Two integers a and b with a > b >= 0

OUTPUT: Integers x, vy, d such that d = ged(a, b)
and d = ax + by"""

print (7 ", a, b) # so we can see the process.

if b = 0:
return 1, 0, a

X, ¥y, d = euclidExtended(b, a % b)

return y, x - af/b*y, d

e Proof that it works

— | decided that it is a bit advanced for students who
may have just seen Modular Arithmetic for the first

time yesterday.
— If you are interested, look up “extended Euclid proof”
— We'll do a couple of convincing examples. _: :

Forward-backward Example:
gcd (33, 14)

33=2%14+5
14=2%54+4
5=1*%4+1

4=4%*1+0,sogcd(33, 14) =1.
Now work backwards
1=5-4. Substitute 4 = 14 - 2*5.
1=5-(14-2*5) =3*5 - 14, Substitute 5 =33 - 2*14
1=3(33-2*%14)-14=3*33 - 7*14

Thusx=3andy=-7 Done! v

Another example (same
computation, different order):
97 = 4-20+17 gcd (97, 20)

20=1-17+3

17 =5-3+2

3=1-2+1 soGCD is 1.

Now figure out the x and y

17 =1-97-4-20

20-1-17=3s03=1-20-1-17 =1-20-(1-97-4-20) = -1-97+5-20
17=5-3+2s02 =17-5-3=(1:97-4-20)-5(-1-97+5-20) = 6-97-29-20
1=3-2=(-1-97+5-20)-(6-97-29-20) = -7-97+34-20 - -

Thusx=-7andy =34 Done! v

