MA/CSSE 473
Day 05 ® o

MA/CSSE 473 Day 05
e HW 2 due tonight, 3 is due Monday

e Student Questions
e Asymptotic Analysis example: summation
e Review topics | don’t plan to cover in class

e Continue Algorithm Overview/Review
— Integer Primality Testing and Factoring
— Modular Arithmetic intro
— Euclid’s Algorithm

Asymptotic Analysis Example

e Find a simple big-Theta expression (as a
function of n) for the following sum

—when0O<c<1

—whenc=1

—whenc>1

e f(nNN)=1l+c+c2+c3+..+C"

Quick look at review topics in textbook

REVIEW THREAD

Textbook Topics | Won't Cover in Class

e Chapter 1 topics that | will not discuss in detail
unless you have questions. They should be
review For some of them, there will be review
problems in the homework

— Sieve of Eratosthenes (all primes less than n)
— Algorithm Specification, Design, Proof, Coding

— Problem types : sorting, searching, string
processing, graph problems, combinatorial
problems, geometric problems, numerical
problems

— Data Structures: ArraylLists, LinkedLists, trees, ° o
search trees, sets, dictionaries,

Textbook Topics | Won't Cover*

e Chapter 2
— Empirical analysis of algorithms should be review

— | believe that we have covered everything else in
the chapter except amortized algorithms and
recurrence relations

— We will discuss amortized algorithms

— Recurrence relations are covered in CSSE 230 and
MA 375. We'll review particular types as we
encounter them.

*Unless you ask me to

Textbook Topics | Won't Cover*

e Chapter 3 - Review
— Bubble sort, selection sort, and their analysis
— Sequential search and simple string matching

*Unless you ask me to

Textbook Topics | Won't Cover*

e Chapter 4 - Review
— Mergesort, quicksort, and their analysis
— Binary search
— Binary Tree Traversal Orders (pre, post, in, level)

*Unless you ask me to

Textbook Topics | Won't Cover*

e Chapter 5 - Review
— Insertion Sort and its analysis
— Search, insertion, delete in Binary Tree
— AVL tree insertion and rebalance

*Unless you ask me to

Efficient Fibonacci Algorithm?

Let X be the matrix (O ﬂ

1

= F

Then Lo x| ©
FZ Fl

F F 2 |:0 |:n n |:0
also =X =X°- ,and =X"-
F, F, F Fi F

How many additions and multiplications of
numbers are necessary to multiply two 2x2
matrices?

If n = 2%, how many matrix multiplications does it
take to compute X"?

— O(log n), it seems.
But there is a catch!

N
[N

Hidden because not ready for prime

e Refine T(n) calculatio m ti ﬁr computing the nth

Fibonacci number) fon éfylé ree algorithms

— Recursive (fib1)
e We originally had T(n) € B(F(n)) = ©(29-6%4n)
e We assumed that addition was constant time.
¢ Since each addition is ©(n), the whole thing is ©(n-F(n))

— Array (fib2)
e We originally had T(n) € ©(n), because of n additions.
¢ Since each addition is ©(n), the whole thing is 6(n?)

— Matrix multiplication approach (fib3)
e We saw that ©(log n) 2x2 matrix multiplications give us F,..

o Let M(k) be the time required to multiply two k-bit numbers.
M(k) € ©(k?) for some a with 1 <a < 2.

e |t's easy to see that T(n) € O(Ml(n) log n)
e Can we show that T(n) € O(M(n)) ?

— Doitfora=2and a =log,(3) ® e
— If the multiplication of numbers is better than O(n?), T ®
so is finding the nt" Fibonacci number. 'Y 6

http://www.rose-hulman.edu/class/csse/csse473/201310/InClassCode/Day06 FibAnalysis Division Exponentiatidh-

Integer Division

Modular arithmetic

Euclid's Algorithm

Heading toward Primality Testing

ARITHMETIC THREAD

FACTORING and PRIMALITY

e Two important problems

— FACTORING: Given a number N, express it as a product of its
prime factors

— PRIMALITY: Given a number N, determine whether it is
prime
e Where we will go with this eventually

— Factoring is hard

e The best algorithms known so far require time that is exponential in
the number of bits of N

— Primality testing is comparatively easy
— A strange disparity for these closely-related problems
— Exploited by cryptographic algorithms

e More on these problems later
— First, more math and computational background...

Recap: Arithmetic Run-times

For operations on two k-bit numbers:
Addition: ©(k)
Multiplication:

— Standard algorithm: 6(k?)

— "Gauss-enhanced": ©(k!-?), but with a lot of
overhead.

Division (We won't ponder it in detail, but see
next slide): ©(k?)

Algorithm for Integer Division

def divide(x, vy):
nnn Tnput: Two non—-negative integers x and y, where y>=1.
Output: The quotient and remainder when x is divided by y."""

if x = 0:
return 0, 0

q, r = divide(x // 2, y) # max recursive calls:

q, r =2 * g, 2 * r # number of bits in x

it x % 2 = 1:
r=1r + 1

it >= y: # note that all of the multiplications
q, r=q+ 1, r - vy # and divisions are by 2:

return q, r # simple bit shifts

Let's work through divide(19, 4).

Analysis?

Modular arithmetic definitions

e x modulo N is the remainder when x is divided by
N. l.e,,
— Ifx=gN+r, where0<r<N (q and r are unique!),
— then x modulo N is equal tor.

e x and y are congruent modulo N, which is written
as x=y (mod N), if and only if N divides (x-y).

— i.e., there is an integer k such that x-y = kN.

— In a context like this, a divides b means "divides with
no remainder”, i.e. "a is a factor of b."

e Example: 253 =13 (mod 60)

Modular arithmetic properties

Substitution rule

If x=x'(mod N) andy=y' (mod N),
thenx+y=x'+y' (mod N), and xy =x'y' (mod N)

Associativity

X+(y+z)=(x+y)+z(modN)

Commutativity

xy = yx (mod N)

Distributivity

X(y+z) = xy +yz (mod N)

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k =

|_Iog N | (the number of bits in N), begin with regular
addition.

— xand y are in the range , SO X+ Vyisinrange

— If the sum is greater than N-1, subtract N.
— Runtimeis©()

e To multiply x and y modulo N, begin with regular
multiplication, which is quadratic in k.

— The result is in range and has at most bits.
— Compute the remainder when dividing by N, quadratice® e

- -‘ lis)

time. So entire operation is ©()

Modular Addition and Multiplication

e To add two integers x and y modulo N (where k = |_Iog N |,
begin with regular addition.

— xand y are in the range 0 to N-1,
sox+Vyisinrange 0to 2N-1

— |f the sum is greater than N-1, subtract N.
— Run timeis © (k)

e To multiply x and y, begin with regular multiplication,
which is quadratic in n.

— The result is in range 0 to (N-1)? and has at most 2k bits.

— Then compute the remainder when dividing by N, quadratic
time in k. So entire operation is ©(k?) -

-
-]
e o= =
g Y »
- o

Modular Exponentiation

In some cryptosystems, we need to compute
XY modulo N, where all three numbers are several
hundred bits long. Can it be done quickly?

Can we simply take x¥ and then figure out the
remainder modulo N?

Suppose x and y are only 20 bits long.

— XV is at least (219)2*), which is about 10 million bits
long.

— Imagine how big it will be if y is a 500-bit number!

To save space, we could repeatedly multiply by x,
taking the remainder modulo N each time.
e If y is 500 bits, then there would be 2°% bit multiplications. e o

e This algorithm is exponential in the length of y. e
e Ouch!

Modular Exponentiation Algorithm
def modexpix, v, N):

1f y==0:
Feturn 1

z = modexp(x, v/ <2, W)

if yv32 ==

Feturn (2%

Feturn (€*Fz2%z2)

The algorithm requires at most
Each callis ©()
So the overall algorithm is ©(

Z)

T I

% N
Let k be the maximum number of bitsin x, y, or N

)

recursive calls

Modular Exponentiation Algorithm

def modexp (x, v, N):
1f y==0:
return 1
z = modexpix, v/2, N
1f v%2 ==
Feturn (z*z) % N
Feturn (Xx*z*z) % N

Let n be the maximum number of bitsin x, y, or N
The algorithm requires at most k recursive calls
Each call is ©(k?)

So the overall algorithm is ©(k3)

