

Factors and Primes Recursive division algorithm

MA/CSSE 473 Day 05

- HW 2 due tonight, 3 is due Monday
- Student Questions
- Asymptotic Analysis example: summation
- Review topics I don't plan to cover in class
- Continue Algorithm Overview/Review
 - Integer Primality Testing and Factoring
 - Modular Arithmetic intro
 - Euclid's Algorithm

Asymptotic Analysis Example

- Find a simple big-Theta expression (as a function of n) for the following sum
 - when 0 < c < 1
 - when c = 1
 - when c > 1
- $f(n) = 1 + c + c^2 + c^3 + ... + c^n$

Quick look at review topics in textbook

REVIEW THREAD

Textbook Topics I Won't Cover in Class

- Chapter 1 topics that I will not discuss in detail unless you have questions. They should be review For some of them, there will be review problems in the homework
 - Sieve of Eratosthenes (all primes less than n)
 - Algorithm Specification, Design, Proof, Coding
 - Problem types: sorting, searching, string processing, graph problems, combinatorial problems, geometric problems, numerical problems
 - Data Structures: ArrayLists, LinkedLists, trees, search trees, sets, dictionaries,

Chapter 2

- Empirical analysis of algorithms should be review
- I believe that we have covered everything else in the chapter except amortized algorithms and recurrence relations
- We will discuss amortized algorithms
- Recurrence relations are covered in CSSE 230 and MA 375. We'll review particular types as we encounter them.

*Unless you ask me to

- Chapter 3 Review
 - Bubble sort, selection sort, and their analysis
 - Sequential search and simple string matching

- Chapter 4 Review
 - Mergesort, quicksort, and their analysis
 - Binary search
 - Binary Tree Traversal Orders (pre, post, in, level)

- Chapter 5 Review
 - Insertion Sort and its analysis
 - Search, insertion, delete in Binary Tree
 - AVL tree insertion and rebalance

Efficient Fibonacci Algorithm?

- Let X be the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ Then $\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = X \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$
- also $\begin{pmatrix} F_2 \\ F_2 \end{pmatrix} = X \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = X^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$, and $\begin{pmatrix} F_n \\ F_1 \end{pmatrix} = X^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$
- How many additions and multiplications of numbers are necessary to multiply two 2x2 matrices?
- If n = 2^k, how many matrix multiplications does it take to compute Xⁿ?
 - O(log n), it seems.
- But there is a catch!

Hidden because not ready for prime

- Refine T(n) calculations, (the time for computing the nth Fibonacci number) for each of our three algorithms
 - Recursive (fib1)
 - We originally had $T(n) \in \Theta(F(n)) \approx \Theta(2^{0.694n})$
 - We assumed that addition was constant time.
 - Since each addition is $\Theta(n)$, the whole thing is $\Theta(n \cdot F(n))$

Array (fib2)

- We originally had $T(n) \in \Theta(n)$, because of n additions.
- Since each addition is $\Theta(n)$, the whole thing is $\Theta(n^2)$

Matrix multiplication approach (fib3)

- We saw that $\Theta(\log n)$ 2x2 matrix multiplications give us F_n .
- Let M(k) be the time required to multiply two k-bit numbers. $M(k) \in \Theta(k^a)$ for some a with $1 \le a \le 2$.
- It's easy to see that T(n) ∈ O(MI(n) log n)
- Can we show that $T(n) \in O(M(n))$?
 - Do it for a = 2 and $a = \log_2(3)$
 - If the multiplication of numbers is better than O(n²), so is finding the nth Fibonacci number.

Integer Division

Modular arithmetic

Euclid's Algorithm

Heading toward Primality Testing

ARITHMETIC THREAD

FACTORING and **PRIMALITY**

Two important problems

- FACTORING: Given a number N, express it as a product of its prime factors
- PRIMALITY: Given a number N, determine whether it is prime

Where we will go with this eventually

- Factoring is hard
 - The best algorithms known so far require time that is exponential in the number of bits of N
- Primality testing is comparatively easy
- A strange disparity for these closely-related problems
- Exploited by cryptographic algorithms

More on these problems later

First, more math and computational background...

Recap: Arithmetic Run-times

- For operations on two k-bit numbers:
- Addition: Θ(k)
- Multiplication:
 - Standard algorithm: $\Theta(k^2)$
 - "Gauss-enhanced": $\Theta(k^{1.59})$, but with a lot of overhead.
- Division (We won't ponder it in detail, but see next slide): Θ(k²)

Algorithm for Integer Division

```
def divide(x, y):
    """ Input: Two non-negative integers x and y, where y>=1.
        Output: The quotient and remainder when x is divided by y."""
    if x == 0:
        return 0, 0
    q, r = divide(x // 2, y)  # max recursive calls:
    q, r = 2 * q, 2 * r  # number of bits in x
    if x % 2 == 1:
        r = r + 1
    if r >= y:  # note that all of the multiplications
        q, r = q + 1, r - y  # and divisions are by 2:
    return q, r  # simple bit shifts
```

Let's work through divide(19, 4).

Analysis?

Modular arithmetic definitions

- x modulo N is the remainder when x is divided by N. l.e.,
 - If x = qN + r, where $0 \le r < N$ (q and r are unique!),
 - then x modulo N is equal to r.
- x and y are congruent modulo N, which is written as x≡y (mod N), if and only if N divides (x-y).
 - i.e., there is an integer k such that x-y = kN.
 - In a context like this, a divides b means "divides with no remainder", i.e. "a is a factor of b."
- Example: $253 \equiv 13 \pmod{60}$

Modular arithmetic properties

- Substitution rule
 - If $x \equiv x' \pmod{N}$ and $y \equiv y' \pmod{N}$, then $x + y \equiv x' + y' \pmod{N}$, and $xy \equiv x'y' \pmod{N}$
- Associativity
 - $x + (y + z) \equiv (x + y) + z \pmod{N}$
- Commutativity
 - $xy \equiv yx \pmod{N}$
- Distributivity
 - $x(y+z) \equiv xy + yz \pmod{N}$

Modular Addition and Multiplication

- To add two integers x and y modulo N (where k = log N (the number of bits in N), begin with regular addition.
 - x and y are in the range_____, so x + y is in range _____
 - If the sum is greater than N-1, subtract N.
 - Run time is Θ ()
- To multiply x and y modulo N, begin with regular multiplication, which is quadratic in k.
 - The result is in range _____ and has at most _____ bits.
 - Compute the remainder when dividing by N, quadratic time. So entire operation is Θ()

Modular Addition and Multiplication

- To **add** two integers x and y modulo N (where $k = \lceil \log N \rceil$, begin with regular addition.
 - x and y are in the range 0 to N-1,
 so x + y is in range 0 to 2N-1
 - If the sum is greater than N-1, subtract N.
 - Run time is $\Theta(\mathbf{k})$
- To multiply x and y, begin with regular multiplication, which is quadratic in n.
 - The result is in range 0 to (N-1)² and has at most 2k bits.
 - Then compute the remainder when dividing by N, quadratic time in k. So entire operation is $\Theta(k^2)$

Modular Exponentiation

- In some cryptosystems, we need to compute x^y modulo N, where all three numbers are several hundred bits long. Can it be done quickly?
- Can we simply take x^y and then figure out the remainder modulo N?
- Suppose x and y are only 20 bits long.
 - x^y is at least $(2^{19})^{(2^{19})}$, which is about 10 million bits long.
 - Imagine how big it will be if y is a 500-bit number!
- To save space, we could repeatedly multiply by x, taking the remainder modulo N each time.
 - If y is 500 bits, then there would be 2⁵⁰⁰ bit multiplications.
 - This algorithm is exponential in the length of y.
 - Ouch!

Modular Exponentiation Algorithm

```
def modexp(x, y, N):
    if y==0:
        return 1
    z = modexp(x, y/2, N)
    if y%2 == 0:
        return (z*z) % N
    return (x*z*z) % N
```

- Let k be the maximum number of bits in x, y, or N
- The algorithm requires at most ____ recursive calls
- Each call is Θ()
- So the overall algorithm is Θ()

Modular Exponentiation Algorithm

```
def modexp(x, y, N):
    if y==0:
        return 1
    z = modexp(x, y/2, N)
    if y%2 == 0:
        return (z*z) % N
    return (x*z*z) % N
```

- Let n be the maximum number of bits in x, y, or N
- The algorithm requires at most k recursive calls
- Each call is Θ(k²)
- So the overall algorithm is Θ(k³)

