MA/CSSE 473
Day 03 ®

>
Asymptotics .. ’.

A Closer Look at
Arithmetic

With another student,
try to write a precise,
formal definition of

“t(n) is in O(g(n))”

Day 3

e Student questions

— Course policies?

— HW assignments?

— Anything else?
e The two “early course” threads
e Review of asymptotic notation

e Addition and multiplication algorithms

Two threads in lectures

e Each day at the beginning of the course
o A little review (today it's a lot)

e Continue with discussion of efficiency of
Fibonacci and arithmetic (if there is time).

Review thread for today:

Asymptotics (O, ©, Q)

Mostly a recap of 230 lecture on same topic.
I

Rapid-fire Review:
Definitions of O, 6, Q

* | will re-use some of my slides from CSSE 230
— Some of the pictures are from the Weiss book.

e And some of Levitin's pictures

e Avery similar presentation appears in Levitin,
section 2.2

e Since this is review, we will move much quicker
than in 230

Asymptotic Analysis

e We only really care what happens
when N (the size of a problem) gets
large

e |s the function linear? quadratic?
exponential? etc.

Asymptotic order of growth

Informal definitions

A way of comparing functions that ignores constant
factors and small input sizes

® O(g(n)): class of functions t(n) that grow no faster
than g(n)

* O(g(n)): class of functions t(n) that grow at same
rate as g(n)

* (g(n)): class of functions t(n) that grow at least

as fast as g(n) <=

Formal Definition

e We will write a precise formal definition of
"t(n) €0(g(n)"

— This is one thing that students in this course should
soon be able to write from memory...

— ... and also understand it, of course!

Big-oh (a.k.a. Big O)

F

| og{n}
]
| t(n)
i
1
1
|
1
1
1
1
1
l
1

doesn't |

matter f
:
1
1
! -
n i L

0

Figure 2.1 Big-oh notation: #(n) € O(g(n) v

Prove a Big O Property

e For any function g(n), O(g(n)) is a set of functions

e We say that t(n) €O(g(n)) iff there exist two
positive constants c and n, such that
foralln=n, t(n)<cg(n)

e Rewrite using V and 1 notation

* If f(n)eO(g(n)) and t(n)eO(g(n)),
then f(n)+t(n)e0(g(n))

* Let's prove it

Answer (Summer Only)

e Recall: t(n) €O(g(n)) iff there exist two positive constants ¢
and n, such that
foralln=n,, t(n)<cg(n)

* If f(n)eO(g(n)) and t(n)O(g(n)),
then f(n)+t(n)eO(g(n))

* Proof By definition, there are constants c,, ¢,, n;, n,, such
that foralln>n,, f(n)<c, g(n), and foralln>n,,
t(n) <c, g(n). Let n,=max(n,, n2), and let c=cl + c2.
Then forany n>n,, f(n)+t(n) <c, g(n) +c, g(n) =cg(n).

® @
- -
ot gm e

Big-omega

t{n)

1

doesn't
matter

—

0
L

[]
-
- =0

Fig. 2.2 Big-omega notation: t(n} € Q(gin)) W

Big-theta

c,g({n)
A
t{n)
59(n)
doesn't
matter
s > 11

0
® @
-
o = 8

Figure 2.3 Big-theta notation: t(n) € @(g(n)) W

Big O examples

¢ All that we must do to prove that t(n) is O(g(n)) is produce a
pair of numbers ¢ and n, that work for that case.

e t(n)=n, g(n)=n2
e t(n)=n, g(n)=3n.

e t(n)=n+12,g(n)=n.
We can choose c=3 and n, =6, or c=4 and n, = 4.

e t(n)=n+sin(n)

e t(n)=n2+sqrt(n)

In CSSE 230, we do these in great detail in class.

In 473, | say, "work on them if you need =
review/practice, " and give you a few possible v
answers on the next slide.

Answers to examples

e For this discussion, assume that all functions have non-
negative values, and that we only care about n>0.
For any function g(n), O(g(n)) is a set of functions We say that
a function f(n) is (in) O(g(n)) if there exist two positive
constants ¢ and n, such that for all n>n,, f(n)<cg(n).

¢ So all we must do to prove that f(n) is O(g(n)) is produce two
such constants.

e f(n)=n+12, g(n)="727>.
— g(n)=n.Then c=3 and n, =6, or c =4 and n, = 4, etc.
— f(n)=n+sin(n):g(n)=n,c=2,n,=1
— f(n) = n? +sqrt(n): g(n) =n2,c=2,n,=1

Limits and asymptotics

Consider the limit I i m t(n)

N—o0 g(n)

What does it say about asymptotics if this limit is zero, nonzero,
infinite?

We could say that knowing the limit is a sufficient but not
necessary condition for recognizing big-oh relationships.

It will be sufficient for most examples in this course.

Challenge: Use the formal definition of limit and the formal

definition of big-oh to prove these properties. W

Apply this limit property to the
following pairs of functions

N and N2

N2 + 3N + 2 and N2

N + sin(N) and N

log N and N

N log N and N?

N2 and aN (a >1)

aVNand bN (a<b)

log,N and log,N (a<b)
N!and NN

2 e =l O D SN

€

Big-Oh Style

e Give tightest bound you can

— Saying that 3N+2 € O(N3) is true, but not as useful as saying
it’s O(N) [What about ©(N3) ?]

e Simplify:
— You could say:
— 3n+2 is O(5n-3log(n) + 17)
— and it would be technically correct...
— But 3n+2 €0(n) is better

e But... if | ask “true or false: 3n+2 € O(n?)”,
what’s the answer? .

— True! l - .

BACK TO AND ARITHMETIC THREAD
FROM LAST TIME:

The catch!

e Are addition and multiplication constant-time
operations?

e We take a closer look at the "basic operations"

e Addition first:

e At most, how many digits in the sum of three
decimal one-digit numbers?

e |s the same result true in binary and every other
base?

e Add two k-bit positive integers (53+35):

Carry: 1 a1
1 1 0 1 0 1 (35)
1 0 0 0 1 1 (53) ® e
1 0 1 1 0 0 0 (88) =" ="

e So adding two k-bit integers is O(). v

Multiplication
e Example: multiply 13 by 11
1 1 0 1
x 1 0 1 1
1 1 O 1 (1101times1)
1 1 0 1 (1201 times 1, shifted once)
0O 0O 0 O (1201 times 1, shifted twice)
1 1 0 1 (1201 times 1, shifted thrice)
1 0 0 0 1 1 1 1 (binary143)

e There are K rows of 2Kk bits to add, so
we do an O(K) operation K times, thus
the whole multiplication is O() ?

e Can we do better? >

10

Multiplication by an Ancient Method

e This approach was known to Al Khwarizimi
e According to Dasgupta, et al, still used today in
some European countries

e Repeat until 15t number is 1, keeping all results:
— Divide 1t number by 2 (rounding down)
— double 2" number

e Example
Lo 13 Then strike out any rows whose
S 26 first number is even, and add up
1 104 the remaining numbers in the

143 second column.

e Correct? Analysis v

Recursive code for this algorithm

def multiply(m, n):
"multiply two integers m and n, where n >= 0"
if n == 0:
return 0
z = multiply (m, n // 2)
ifn% 2==20:
return 2 * z
return m + 2 * z

print (multiply(12, 17))

€

11

For retference: Ihe Master

Theorem
e The Master Theorem for Divide and Conquer
recurrence relations:

: For details, see Levitin
(])
Consider the recurrence E—

T(n) = aT(n/b) +f(n), T(1)=C, Weiss section 7.5.3.
where f(n) = (n*) and k>0,

Grimaldi's Theorem

e The solution is 10.1 is a special case of

_ e(nk) if 3 < bk the Master Theorem.

— B(nklogn) if a=Dbk

— B(nlo8x?) if a>bk
We will use this theorem often. You should - _: :
review its proof soon (Weiss's proof is a bit T
easier than Levitin's). '

New Multiplication Approach

e Divide and Conquer
e To multiply two k-bit integers x and y:
— Split each into its left and right halves so that
x=2"2x +x;, and y=2"%y +y.
— The straightforward calculation of xy would be
(242x + xg) (2¥%y, + yg) =
2%y, + 22(x, Yr + XgYL) + XrYR
— Code on next slide
— We can do the four multiplications of k/2-bit integers using
four recursive calls, and the rest of the work (a constant
number of bit shifts and additions) in time O(k) . _: :

— Thus T(k) = . Solution? v

12

Code for divide-and-conquer
multiplication
def multiply(x, y, n):

rrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y""

if n == 1:
return x * y

n over two = n//2
two_to the n over two = 1 << n _over two # a single right bit-shift
xL, XR = X // two_to_the n over_ two, x % two_to _the n over_ two

yL, YR =y // two_to the n over two, y % two_to the n over_ two
note that these two operations could be done by bit shifts and masking.

pl = multiply (xL, yL, n_over_ two)
p2 = multiply (xL, yR, n_over two)
p3 = multiply (%R, yL, n_over two)
pd4 = multiply (xR, yR, n over two)

return (pl << n) + ((p2 + p3) << n over two) + pd

Can we do better than O(k?)?

e |s there an algorithm for multiplying two k-bit
numbers in time that is less than O(k?)?

e Basis: A discovery of Carl Gauss (1777-1855)

— Multiplying complex numbers:

— (a + bi)(c+di) = ac — bd + (bc + ad)i

— Needs four real-number multiplications and three
additions

— But bc + ad = (a+b)(c+d) — ac —bd

— And we have already computed ac and bd when we
computed the real part of the product!

— Thus we can do the original product with 3
multiplications and 5 additions

— Additions are so much faster than multiplications that
we can essentially ignore them. e

— Alittle savings, but not a big deal until applied _.- < o
recursively! T~

13

Code for Gauss-based Algorithm

Hef multiply(x, vy, n):
mrrmultiply two integers x and y, where n >= 0
is a power of 2, and as large as the maximum number of bits in x or y"""

if n == 1:
return x * y

n_over two = n // 2 # simply shifts the bits one to the right.
two_to the n over two = 1 << n_over_two
XL, XR = x // two_to_the n over two, x % two_to the n over two

yL, yR =y // two_to_the n over two, y % two_to_the n over_ two
note that these two operations could be done by bit shifts and masking.

pl = multiply (=L, yL, n _over two)
p2 = multiply (xL+xR, yL+yR, n over two)
p3 = multiply (%R, YR, n over two)

return (pl << n) + ((p2 - p3 - pl) << n_over_two) + p3

Is this really a lot faster?

e Standard multiplication: ©(k?)

¢ Divide and conquer with Gauss trick: 6(k!->°)
— Write and solve the recurrence

e But there is a lot of additional overhead with
Gauss, so standard multiplication ;g

is faster for small values of n. 000
plot{ {(n"2, n"1.5%}, n=0..100},]

RO00
e In reality we would not let the 40001
recursion go down to the 20004

single bit level, but only down
to the number of bits that our
machine can multiply in = Se

hardware without overflow. v

0 o 4t|n5ij 80 100

14

