

No in-class Quizzes in 473

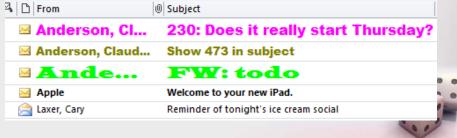
- By now, you know whether they help you.
- Most days, a "handout with fill-ins" instead.
- You will not need your computer in class.

MA/CSSE 473 Day 01

- Student/Instructor Intro
- In-class Quizzes
- Roll Call
- Questions about the Syllabus?
- The importance of Data Structures
- The importance of Algorithms
- Begin Algorithm Overview/Review
 - Which will last a few days

Roll Call

- In alphabetical order, please tell us (loud enough so everyone can hear)
 - Your name (name you want to be called by)
 - Where you are from
 - (10-second version) what you did this summer.



A Few Claude Facts

- Degrees: Caltech, Illinois, Indiana (MA, MA, CS)
- This is my 27th year at Rose
- Have taught about 22 different courses; favorites are ...
- I have 9 children, ages 12-33) 5 grandchildren.
- I live **very** close to campus
- In 2010 I was diagnosed with a very rare connective tissue disease, scleromyxedema. 2-day infusions.
- Despite ugly prognosis, I still know that God's in control.
- I really like it when you put 473 as part of the subject line in your email to me.

Contact Info

- Claude Anderson, F-210, x8331
- anderson@rose-hulman.edu
- http://www.google.com/calendar/embed?src=a nderson%40rose-hulman.edu
 - View by week is probably best
- If you email me, please include 473 somewhere in the subject line (also include a real subject)

Where to find course materials

- Moodle: drop boxes, solutions, etc.
- Piazza: Announcements and discussion forums.
- Schedule page and things linked from it
- Notice the Hints to Exercises section that begins on p 497 of the textbook
 - First try to do each problem without using the hint.
 - But if you get stuck, by all means look at the hint.
- Sometimes I will post my PowerPoint slides *after* lectures, because they may contain spoilers. If I do post them before, I may repost a different version after.
- Sometimes my slides contain more than we actually get to in class. When that happens, I will usually move that material to the following day's class.

Questions about the Syllabus?

- ... or the schedule page?
- ... or other course details?
- You can ask now, or ask tomorrow

The Ideal and the Real

- Ideal
 - Everyone comes to this course with the material from CSSE 230 and MA 375 fresh in their minds
- Real
 - Only about 50% of you took 230 during the 2013-14 year.
- We'll do quite a bit of review/reinforcement in this course
 - In many cases, you'll understand things much better the second time you see them.
- A significant portion of the early reading assignments discuss things you have probably seen before
 - Sometimes treated at a higher level than what you so before.

The Ideal and the Real, part 2

- Ideal
 - Everyone comes to this course with the same background
- Real
 - You have taken a variety of courses that introduce common algorithms
 - Not all versions of CSSE 230 and the Disco courses are the same
 - And some people have taken Graph Theory, crypto, ...
- Result
 - For every major algorithm we discuss, chances are good that someone in the class will have already seen it
- What to do about it?
 - Live with it, or only discuss obscure algorithms. I choose the former.

This is a very mathematical class

- More about ideas than implementations
- Some terms I assign one or two implementation projects
- Not sure yet whether I will do so this term
- A few "regular" homework problems will require a small implementation (usually 50 lines or fewer)

An approach to this course

- Examine and/or analyze lots of algorithms.
- Look for similar approaches.
- Develop a toolbox.
 - Some might call it a "bag of tricks"
- Internalize the common terminology and ways of talking about algorithms.

Ways of organizing algorithms

- By area of application (230 approach), e.g.
 - Sorting algorithms
 - Search algorithms
 - Algorithms based on what data structure is used
 - Tree algorithms
 - Graph algorithms
 - Heap algorithms
- By techniques used (473 approach), e.g.
 - Brute Force
 - Greedy
 - Decrease and Conquer
 - Divide and Conquer
 - Dynamic Programming

Structuring Data Can Help a Lot

- If you have seen this problem before, please don't speak up (so other students get a chance to think about it).
- Example is <u>here</u>.

(Note: I am not putting the example on-line)

Algorithms are Important

- The next few slides are based on Chapter 0 of Algorithms by Dasgupta, Papadimitriou, and Vazirani (McGraw-Hill, 2008)
- Two enterprises have fueled the computer revolution:
 - Rapidly-increasing hardware speeds
 - Efficient Algorithms

A Big Idea That Changed the World

- Moveable type
 - Gutenberg, 1448 (I saw a Gutenberg Bible in summer 2008 at the Library of Congress)
 - According to Dasgupta, et. al
 - Literacy spread
 - The Dark Ages ended
 - The human intellect was liberated
 - Science and technology triumphed
 - The Industrial Revolution happened
 - Many historians say we owe all of this to typography
 - For a great discussion of algorithms and typography
 - See the interview with Donald Knuth in July-August CACM
 - It's assigned reading for this course. See Day 3 in schedule

The Other Earth-Shaking Big Idea

- Algorithms
- First step: Replacing Roman Numerals by decimals (India, 7th century AD)
 - Could now do arithmetic efficiently
 - Codified by Al Khwarizimi (Baghdad, 9th cent.)
 - Add, subtract, multiply, divide, square roots, digits of π .
 - Precise, unambiguous, mechanical instructoins
 - The word **algorithm** is derived from his name.
- The champion of algorithms in the West
 - Leonardo of Pisa (a.k.a. Fibonacci) (early 13th century)

Do you agree with Dasgupta?

- Are moveable type and algorithms the biggest change motivators since the Dark Ages?
- What else would you include in the list?

Brainstorm

- What is an algorithm?
- In groups of three, try to come up with a good definition.
- Goal: Short but complete
- Two minutes

Write an algorithm ...

- ... based on the schedule page for this course
- Input: A session number (1 .. 40)
- Output: A number representing the day of the week. 0 represents M, 1 T, 2 R, 3 F.
- Write the algorithm (a function, actually) with your group.

